高二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)概括
如果高二階段老師在的時(shí)候你就認(rèn)真學(xué)習(xí),不在的時(shí)候就隨隨便便,甚至消極怠工,似乎是為老師學(xué)習(xí),這種意識(shí)下的學(xué)習(xí)效率是可想而知的。以下是小編給大家整理的高二數(shù)學(xué)知識(shí)點(diǎn),希望大家能夠喜歡!
高二數(shù)學(xué)上冊(cè)復(fù)習(xí)的知識(shí)點(diǎn)概括1
函數(shù)的單調(diào)性、奇偶性、周期性
單調(diào)性:定義:注意定義是相對(duì)與某個(gè)具體的區(qū)間而言。
判定方法有:定義法(作差比較和作商比較)
導(dǎo)數(shù)法(適用于多項(xiàng)式函數(shù))
復(fù)合函數(shù)法和圖像法。
應(yīng)用:比較大小,證明不等式,解不等式。
奇偶性:
定義:注意區(qū)間是否關(guān)于原點(diǎn)對(duì)稱,比較f(x)與f(-x)的關(guān)系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數(shù);
f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數(shù)。
判別方法:定義法,圖像法,復(fù)合函數(shù)法
應(yīng)用:把函數(shù)值進(jìn)行轉(zhuǎn)化求解。
周期性:定義:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。
其他:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.
應(yīng)用:求函數(shù)值和某個(gè)區(qū)間上的函數(shù)解析式。
四、圖形變換:函數(shù)圖像變換:(重點(diǎn))要求掌握常見基本函數(shù)的圖像,掌握函數(shù)圖像變換的一般規(guī)律。
常見圖像變化規(guī)律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯(lián)系起來思考)
平移變換y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系數(shù),要先提取系數(shù)。如:把函數(shù)y=f(2x)經(jīng)過平移得到函數(shù)y=f(2x+4)的圖象。
(ⅱ)會(huì)結(jié)合向量的平移,理解按照向量(m,n)平移的意義。
對(duì)稱變換y=f(x)→y=f(-x),關(guān)于y軸對(duì)稱
y=f(x)→y=-f(x),關(guān)于x軸對(duì)稱
y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對(duì)稱
y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關(guān)于y軸對(duì)稱。(注意:它是一個(gè)偶函數(shù))
伸縮變換:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具體參照三角函數(shù)的圖象變換。
一個(gè)重要結(jié)論:若f(a-x)=f(a+x),則函數(shù)y=f(x)的圖像關(guān)于直線x=a對(duì)稱;
高二數(shù)學(xué)上冊(cè)復(fù)習(xí)的知識(shí)點(diǎn)概括2
一、變量間的相關(guān)關(guān)系
1.常見的兩變量之間的關(guān)系有兩類:一類是函數(shù)關(guān)系,另一類是相關(guān)關(guān)系;與函數(shù)關(guān)系不同,相關(guān)關(guān)系是一種非確定性關(guān)系.
2.從散點(diǎn)圖上看,點(diǎn)分布在從左下角到右上角的區(qū)域內(nèi),兩個(gè)變量的這種相關(guān)關(guān)系稱為正相關(guān),點(diǎn)分布在左上角到右下角的區(qū)域內(nèi),兩個(gè)變量的相關(guān)關(guān)系為負(fù)相關(guān).
二、兩個(gè)變量的線性相關(guān)
1.從散點(diǎn)圖上看,如果這些點(diǎn)從整體上看大致分布在通過散點(diǎn)圖中心的一條直線附近,稱兩個(gè)變量之間具有線性相關(guān)關(guān)系,這條直線叫回歸直線.
當(dāng)r>0時(shí),表明兩個(gè)變量正相關(guān);
當(dāng)r<0時(shí),表明兩個(gè)變量負(fù)相關(guān).
r的絕對(duì)值越接近于1,表明兩個(gè)變量的線性相關(guān)性越強(qiáng).r的絕對(duì)值越接近于0時(shí),表明兩個(gè)變量之間幾乎不存在線性相關(guān)關(guān)系.通常|r|大于0.75時(shí),認(rèn)為兩個(gè)變量有很強(qiáng)的線性相關(guān)性.
三、解題方法
1.相關(guān)關(guān)系的判斷方法一是利用散點(diǎn)圖直觀判斷,二是利用相關(guān)系數(shù)作出判斷.
2.對(duì)于由散點(diǎn)圖作出相關(guān)性判斷時(shí),若散點(diǎn)圖呈帶狀且區(qū)域較窄,說明兩個(gè)變量有一定的線性相關(guān)性,若呈曲線型也是有相關(guān)性.
3.由相關(guān)系數(shù)r判斷時(shí)|r|越趨近于1相關(guān)性越強(qiáng).
高二數(shù)學(xué)上冊(cè)復(fù)習(xí)的知識(shí)點(diǎn)概括3
反函數(shù):
(1)定義:
(2)函數(shù)存在反函數(shù)的條件:
(3)互為反函數(shù)的定義域與值域的關(guān)系:
(4)求反函數(shù)的步驟:
①將看成關(guān)于的方程,解出,若有兩解,要注意解的選擇;
②將互換,得;
③寫出反函數(shù)的定義域(即的值域)。
(5)互為反函數(shù)的圖象間的關(guān)系:
(6)原函數(shù)與反函數(shù)具有相同的單調(diào)性;
(7)原函數(shù)為奇函數(shù),則其反函數(shù)仍為奇函數(shù);原函數(shù)為偶函數(shù),它一定不存在反函數(shù)。
高二數(shù)學(xué)上冊(cè)復(fù)習(xí)的知識(shí)點(diǎn)概括相關(guān)文章:
★ 高二數(shù)學(xué)復(fù)習(xí)必背知識(shí)點(diǎn)歸納
★ 高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
★ 高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納
★ 高二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)
★ 高二數(shù)學(xué)上下學(xué)期知識(shí)點(diǎn)復(fù)習(xí)提綱
★ 高二數(shù)學(xué)考點(diǎn)知識(shí)點(diǎn)總結(jié)復(fù)習(xí)大綱
★ 高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)上冊(cè)
★ 高二上學(xué)期數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)歸納