国产成人v爽在线免播放观看,日韩欧美色,久久99国产精品久久99软件,亚洲综合色网站,国产欧美日韩中文久久,色99在线,亚洲伦理一区二区

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高二學(xué)習(xí)方法 > 高二數(shù)學(xué) >

高二數(shù)學(xué)選修的必學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間: 贊銳20 分享

知識(shí)掌握的巔峰,應(yīng)該在一輪復(fù)習(xí)之后,也就是在你把所有知識(shí)重新?lián)炱饋?lái)之后。這樣看來(lái),應(yīng)對(duì)高二這一變化的較優(yōu)選擇,是在高二還在學(xué)習(xí)新知識(shí)時(shí),有意識(shí)地把高一內(nèi)容從頭撿起,自己規(guī)劃進(jìn)度,提前復(fù)習(xí)。小編整理的高二數(shù)學(xué)選修的必學(xué)知識(shí)點(diǎn)總結(jié),希望大家能夠喜歡!

高二數(shù)學(xué)選修的必學(xué)知識(shí)點(diǎn)總結(jié)1

直線的傾斜角:

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

直線的斜率:

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

②過(guò)兩點(diǎn)的直線的斜率公式。

注意:

(1)當(dāng)時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無(wú)關(guān);

(3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

直線方程:

1.點(diǎn)斜式:y-y0=k(x-x0)

(x0,y0)是直線所通過(guò)的已知點(diǎn)的坐標(biāo),k是直線的已知斜率。x是自變量,直線上任意一點(diǎn)的橫坐標(biāo);y是因變量,直線上任意一點(diǎn)的縱坐標(biāo)。

2.斜截式:y=kx+b

直線的斜截式方程:y=kx+b,其中k是直線的斜率,b是直線在y軸上的截距。該方程叫做直線的斜截式方程,簡(jiǎn)稱斜截式。此斜截式類似于一次函數(shù)的表達(dá)式。

3.兩點(diǎn)式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)

如果x1=x2,y1=y2,那么兩點(diǎn)就重合了,相當(dāng)于只有一個(gè)已知點(diǎn)了,這樣不能確定一條直線。

如果x1=x2,y1y2,那么此直線就是垂直于X軸的一條直線,其方程為x=x1,不能表示成上面的一般式。

如果x1x2,但y1=y2,那么此直線就是垂直于Y軸的一條直線,其方程為y=y1,也不能表示成上面的一般式。

4.截距式x/a+y/b=1

對(duì)x的截距就是y=0時(shí),x的值,對(duì)y的截距就是x=0時(shí),y的值。x截距為a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推導(dǎo)y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b帶入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。

5.一般式;Ax+By+C=0

將ax+by+c=0變換可得y=-x/b-c/b(b不為零),其中-x/b=k(斜率),c/b=‘b’(截距)。ax+by+c=0在解析幾何中更常用,用方程處理起來(lái)比較方便。

高二數(shù)學(xué)選修的必學(xué)知識(shí)點(diǎn)總結(jié)2

拋物線的性質(zhì):

1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線

x=-b/2a。

對(duì)稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。

特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)

2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

P(-b/2a,(4ac-b^2)/4a)

當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。

3.二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大小。

當(dāng)a>0時(shí),拋物線向上開(kāi)口;當(dāng)a<0時(shí),拋物線向下開(kāi)口。

|a|越大,則拋物線的開(kāi)口越小。

4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。

當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;

當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。

5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

拋物線與y軸交于(0,c)

6.拋物線與x軸交點(diǎn)個(gè)數(shù)

Δ=b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

Δ=b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

Δ=b^2-4ac<0時(shí),拋物線與x軸沒(méi)有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

焦半徑:

焦半徑:拋物線y2=2px(p>0)上一點(diǎn)P(x0,y0)到焦點(diǎn)Fè???÷?

p2,0的距離|PF|=x0+p2.

求拋物線方程的方法:

(1)定義法:根據(jù)條件確定動(dòng)點(diǎn)滿足的幾何特征,從而確定p的值,得到拋物線的標(biāo)準(zhǔn)方程.

(2)待定系數(shù)法:根據(jù)條件設(shè)出標(biāo)準(zhǔn)方程,再確定參數(shù)p的值,這里要注意拋物線標(biāo)準(zhǔn)方程有四種形式.從簡(jiǎn)單化角度出發(fā),焦點(diǎn)在x軸的,設(shè)為y2=ax(a≠0),焦點(diǎn)在y軸的,設(shè)為x2=by(b≠0).

高二數(shù)學(xué)選修的必學(xué)知識(shí)點(diǎn)總結(jié)3

(1)定義:

對(duì)于函數(shù)y=f(x)(x∈D),把使f(x)=0成立的實(shí)數(shù)x叫做函數(shù)y=f(x)(x∈D)的零點(diǎn)。

(2)函數(shù)的零點(diǎn)與相應(yīng)方程的根、函數(shù)的圖象與x軸交點(diǎn)間的關(guān)系:

方程f(x)=0有實(shí)數(shù)根?函數(shù)y=f(x)的圖象與x軸有交點(diǎn)?函數(shù)y=f(x)有零點(diǎn)。

(3)函數(shù)零點(diǎn)的判定(零點(diǎn)存在性定理):

如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)·f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也就是方程f(x)=0的根。

二二次函數(shù)y=ax2+bx+c(a>0)的圖象與零點(diǎn)的關(guān)系

三二分法

對(duì)于在區(qū)間[a,b]上連續(xù)不斷且f(a)·f(b)<0的函數(shù)y=f(x),通過(guò)不斷地把函數(shù)f(x)的零點(diǎn)所在的區(qū)間一分為二,使區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫做二分法。

1、函數(shù)的零點(diǎn)不是點(diǎn):

函數(shù)y=f(x)的零點(diǎn)就是方程f(x)=0的實(shí)數(shù)根,也就是函數(shù)y=f(x)的圖象與x軸交點(diǎn)的橫坐標(biāo),所以函數(shù)的零點(diǎn)是一個(gè)數(shù),而不是一個(gè)點(diǎn).在寫(xiě)函數(shù)零點(diǎn)時(shí),所寫(xiě)的一定是一個(gè)數(shù)字,而不是一個(gè)坐標(biāo)。

2、對(duì)函數(shù)零點(diǎn)存在的判斷中,必須強(qiáng)調(diào):

(1)、f(x)在[a,b]上連續(xù);

(2)、f(a)·f(b)<0;

(3)、在(a,b)內(nèi)存在零點(diǎn)。

這是零點(diǎn)存在的一個(gè)充分條件,但不必要。

3、對(duì)于定義域內(nèi)連續(xù)不斷的函數(shù),其相鄰兩個(gè)零點(diǎn)之間的所有函數(shù)值保持同號(hào)。

利用函數(shù)零點(diǎn)的存在性定理判斷零點(diǎn)所在的區(qū)間時(shí),首先看函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是否連續(xù)不斷,再看是否有f(a)·f(b)<0.若有,則函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)必有零點(diǎn)。

四判斷函數(shù)零點(diǎn)個(gè)數(shù)的常用方法

1、解方程法:

令f(x)=0,如果能求出解,則有幾個(gè)解就有幾個(gè)零點(diǎn)。

2、零點(diǎn)存在性定理法:

利用定理不僅要判斷函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性、周期性、對(duì)稱性)才能確定函數(shù)有多少個(gè)零點(diǎn)。

3、數(shù)形結(jié)合法:

轉(zhuǎn)化為兩個(gè)函數(shù)的圖象的交點(diǎn)個(gè)數(shù)問(wèn)題.先畫(huà)出兩個(gè)函數(shù)的圖象,看其交點(diǎn)的個(gè)數(shù),其中交點(diǎn)的個(gè)數(shù),就是函數(shù)零點(diǎn)的個(gè)數(shù)。

已知函數(shù)有零點(diǎn)(方程有根)求參數(shù)取值常用的方法

1、直接法:

直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過(guò)解不等式確定參數(shù)范圍。

2、分離參數(shù)法:

先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問(wèn)題加以解決。

3、數(shù)形結(jié)合法:

先對(duì)解析式變形,在同一平面直角坐標(biāo)系中,畫(huà)出函數(shù)的圖象,然后數(shù)形結(jié)合求解。

高二數(shù)學(xué)選修的必學(xué)知識(shí)點(diǎn)總結(jié)相關(guān)文章:

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)選修2

高二數(shù)學(xué)必背知識(shí)點(diǎn)總結(jié)

高二數(shù)學(xué)選修2至3知識(shí)點(diǎn)總結(jié)

高二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

高二數(shù)學(xué)選修2—1第一章常用邏輯用語(yǔ)知識(shí)點(diǎn)復(fù)習(xí)

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

高二數(shù)學(xué)考點(diǎn)知識(shí)點(diǎn)總結(jié)復(fù)習(xí)大綱

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)人教版

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)詳細(xì)

1071310