最新高二數學必備知識點
因為高二開始努力,所以前面的知識肯定有一定的欠缺,這就要求自己要制定一定的計劃,更要比別人付出更多的努力,相信付出的汗水不會白白流淌的,收獲總是自己的。下面小編為大家?guī)碜钚赂叨祵W必備知識點,希望對您有所幫助!
高二數學必備知識點
映射、函數、反函數
1、對應、映射、函數三個概念既有共性又有區(qū)別,映射是一種特殊的對應,而函數又是一種特殊的映射。
2、對于函數的概念,應注意如下幾點:
(1)掌握構成函數的三要素,會判斷兩個函數是否為同一函數。
(2)掌握三種表示法——列表法、解析法、圖象法,能根實際問題尋求變量間的函數關系式,特別是會求分段函數的解析式。
(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復合函數,其中g(x)為內函數,f(u)為外函數。
3、求函數y=f(x)的反函數的一般步驟:
(1)確定原函數的值域,也就是反函數的定義域;
(2)由y=f(x)的解析式求出x=f—1(y);
(3)將x,y對換,得反函數的習慣表達式y(tǒng)=f—1(x),并注明定義域。
注意
①:對于分段函數的反函數,先分別求出在各段上的反函數,然后再合并到一起。
②熟悉的應用,求f—1(x0)的值,合理利用這個結論,可以避免求反函數的過程,從而簡化運算。
高二年級數學必修知識點
⑴數列{a}為等差數列的充要條件是:數列{a}的前n項和S可以寫成S=an+bn的形式(其中a、b為常數)。
⑵在等差數列{a}中,當項數為2n(nN)時,S—S=nd,=;當項數為(2n—1)(n)時,S—S=a,=。
⑶若數列{a}為等差數列,則S,S—S,S—S,…仍然成等差數列,公差為、
⑷若兩個等差數列{a}、的前n項和分別是S、T(n為奇數),則=。
⑸在等差數列{a}中,S=a,S=b(n>m),則S=(a—b)。
⑹等差數列{a}中,是n的一次函數,且點(n,)均在直線y=x+(a—)上。
⑺記等差數列{a}的前n項和為S、①若a>0,公差d<0,則當a≥0且a≤0時,S;②若a<0,公差d>0,則當a≤0且a≥0時,S最小。
高二下學期數學知識點
函數的值域與最值
1、函數的值域取決于定義域和對應法則,不論采用何種方法求函數值域都應先考慮其定義域,求函數值域常用方法如下:
(1)直接法:亦稱觀察法,對于結構較為簡單的函數,可由函數的解析式應用不等式的性質,直接觀察得出函數的值域。
(2)換元法:運用代數式或三角換元將所給的復雜函數轉化成另一種簡單函數再求值域,若函數解析式中含有根式,當根式里一次式時用代數換元,當根式里是二次式時,用三角換元。
(3)反函數法:利用函數f(x)與其反函數f—1(x)的定義域和值域間的關系,通過求反函數的定義域而得到原函數的值域,形如(a≠0)的函數值域可采用此法求得。
(4)配方法:對于二次函數或二次函數有關的函數的值域問題可考慮用配方法。
(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數的值域,不過應注意條件“一正二定三相等”有時需用到平方等技巧。
(6)判別式法:把y=f(x)變形為關于x的一元二次方程,利用“△≥0”求值域。其題型特征是解析式中含有根式或分式。
(7)利用函數的單調性求值域:當能確定函數在其定義域上(或某個定義域的子集上)的單調性,可采用單調性法求出函數的值域。
(8)數形結合法求函數的值域:利用函數所表示的幾何意義,借助于幾何方法或圖象,求出函數的值域,即以數形結合求函數的值域。
2、求函數的最值與值域的區(qū)別和聯系
求函數最值的常用方法和求函數值域的方法基本上是相同的,事實上,如果在函數的值域中存在一個最小(大)數,這個數就是函數的最小(大)值。因此求函數的最值與值域,其實質是相同的,只是提問的角度不同,因而答題的方式就有所相異。
如函數的值域是(0,16],值是16,無最小值。再如函數的值域是(—∞,—2]∪[2,+∞),但此函數無值和最小值,只有在改變函數定義域后,如x>0時,函數的最小值為2。可見定義域對函數的值域或最值的影響。
3、函數的最值在實際問題中的應用
函數的最值的應用主要體現在用函數知識求解實際問題上,從文字表述上常常表現為“工程造價最低”,“利潤”或“面積(體積)(最小)”等諸多現實問題上,求解時要特別關注實際意義對自變量的制約,以便能正確求得最值。