高二數(shù)學(xué)知識點(diǎn)梳理總結(jié)
總結(jié)在一個時期、一個年度、一個階段對學(xué)習(xí)和工作生活等情況加以回顧和分析的一種書面材料,通過它可以正確認(rèn)識以往學(xué)習(xí)和工作中的優(yōu)缺點(diǎn),下面是小編給大家?guī)淼?a href='http://www.zbfsgm.com/xuexiff/gaoershuxue/' target='_blank'>高二數(shù)學(xué)知識點(diǎn)梳理總結(jié) ,以供大家參考!
高二數(shù)學(xué)知識點(diǎn)梳理總結(jié)
等差數(shù)列
對于一個數(shù)列{an},如果任意相鄰兩項(xiàng)之差為一個常數(shù),那么該數(shù)列為等差數(shù)列,且稱這一定值差為公差,記為d;從第一項(xiàng)a1到第n項(xiàng)an的總和,記為Sn。
那么,通項(xiàng)公式為,其求法很重要,利用了“疊加原理”的思想:
將以上n-1個式子相加,便會接連消去很多相關(guān)的項(xiàng),最終等式左邊余下an,而右邊則余下a1和n-1個d,如此便得到上述通項(xiàng)公式。
此外,數(shù)列前n項(xiàng)的和,其具體推導(dǎo)方式較簡單,可用以上類似的疊加的方法,也可以采取迭代的方法,在此,不再復(fù)述。
值得說明的是,前n項(xiàng)的和Sn除以n后,便得到一個以a1為首項(xiàng),以d/2為公差的新數(shù)列,利用這一特點(diǎn)可以使很多涉及Sn的數(shù)列問題迎刃而解。
等比數(shù)列
對于一個數(shù)列{an},如果任意相鄰兩項(xiàng)之商(即二者的比)為一個常數(shù),那么該數(shù)列為等比數(shù)列,且稱這一定值商為公比q;從第一項(xiàng)a1到第n項(xiàng)an的總和,記為Tn。
那么,通項(xiàng)公式為(即a1乘以q的(n-1)次方,其推導(dǎo)為“連乘原理”的思想:
a2=a1_,
a3=a2_,
a4=a3_,
````````
an=an-1_,
將以上(n-1)項(xiàng)相乘,左右消去相應(yīng)項(xiàng)后,左邊余下an,右邊余下a1和(n-1)個q的乘積,也即得到了所述通項(xiàng)公式。
此外,當(dāng)q=1時該數(shù)列的前n項(xiàng)和Tn=a1_
當(dāng)q≠1時該數(shù)列前n項(xiàng)的和Tn=a1_1-q^(n))/(1-q).
高二數(shù)學(xué)必修五知識點(diǎn)
(一)解三角形:
1、正弦定理:在中,、、分別為角、、的對邊,,則有
(為的外接圓的半徑)
2、正弦定理的變形公式:①,,;
②,,;③;
3、三角形面積公式:.
4、余弦定理:在中,有,推論:
(二)數(shù)列:
1.數(shù)列的有關(guān)概念:
(1)數(shù)列:按照一定次序排列的一列數(shù)。數(shù)列是有序的。數(shù)列是定義在自然數(shù)N_它的有限子集{1,2,3,…,n}上的函數(shù)。
(2)通項(xiàng)公式:數(shù)列的第n項(xiàng)an與n之間的函數(shù)關(guān)系用一個公式來表示,這個公式即是該數(shù)列的通項(xiàng)公式。如:。
(3)遞推公式:已知數(shù)列{an}的第1項(xiàng)(或前幾項(xiàng)),且任一項(xiàng)an與他的前一項(xiàng)an-1(或前幾項(xiàng))可以用一個公式來表示,這個公式即是該數(shù)列的遞推公式。
如:。
2.數(shù)列的表示方法:
(1)列舉法:如1,3,5,7,9,…(2)圖象法:用(n,an)孤立點(diǎn)表示。
(3)解析法:用通項(xiàng)公式表示。(4)遞推法:用遞推公式表示。
3.數(shù)列的分類:
4.數(shù)列{an}及前n項(xiàng)和之間的關(guān)系:
高二數(shù)學(xué)重點(diǎn)知識歸納最新
正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑
余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角
圓的標(biāo)準(zhǔn)方程(_-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)
圓的一般方程_2+y2+D_+Ey+F=0注:D2+E2-4F>0
拋物線標(biāo)準(zhǔn)方程y2=2p_y2=-2p__2=2py_2=-2py
直棱柱側(cè)面積S=c_h斜棱柱側(cè)面積S=c'_h
正棱錐側(cè)面積S=1/2c_h'正棱臺側(cè)面積S=1/2(c+c')h'
圓臺側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi_r2
圓柱側(cè)面積S=c_h=2pi_h圓錐側(cè)面積S=1/2_c_l=pi_r_l
弧長公式l=a_ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2_l_r
錐體體積公式V=1/3_S_H圓錐體體積公式V=1/3_pi_r2h
斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側(cè)棱長
柱體體積公式V=s_h圓柱體V=p_r2h
乘法與因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根與系數(shù)的關(guān)系_1+_2=-b/a_1__2=c/a注:韋達(dá)定理
判別式
b2-4ac=0注:方程有兩個相等的實(shí)根
b2-4ac>0注:方程有兩個不等的實(shí)根
b2-4ac<0注:方程沒有實(shí)根,有共軛復(fù)數(shù)根
高二數(shù)學(xué)知識點(diǎn)梳理總結(jié)相關(guān)文章:
★ 高二數(shù)學(xué)知識點(diǎn)及公式整理
★ 高二數(shù)學(xué)知識的重點(diǎn)要點(diǎn)的總結(jié)
★ 高二數(shù)學(xué)知識點(diǎn)總結(jié)(人教版)
★ 高二數(shù)學(xué)知識點(diǎn)總結(jié)選修2
★ 高二數(shù)學(xué)知識點(diǎn)總結(jié)人教版
★ 高二數(shù)學(xué)知識點(diǎn)總結(jié)