高二數(shù)學(xué)學(xué)習(xí)方法之巧記口訣
高二數(shù)學(xué)學(xué)習(xí)方法之巧記口訣
有理數(shù)的加法運(yùn)算:同號相加一邊倒;異號相加“大”減“小”,符號跟著大的跑;絕對值相等“零”正好。【注】“大”減“小”是指絕對值的大小。下面是小編為大家?guī)淼母叨?shù)學(xué)學(xué)習(xí)方法:巧記口訣,希望能幫到大家!
高二數(shù)學(xué)學(xué)習(xí)方法:巧記口訣
合并同類項(xiàng):合并同類項(xiàng),法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣。
去、添括號法則:去括號、添括號,關(guān)鍵看符號,括號前面是正號,去、添括號不變號,括號前面是負(fù)號,去、添括號都變號。
恒等變換:兩個(gè)數(shù)字來相減,互換位置最常見,正負(fù)只看其指數(shù),奇數(shù)變號偶不變。(a-b)2n1=-(b-a)2n1(a-b)2n=(b-a)2n
平方差公式:平方差公式有兩項(xiàng),符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。
完全平方:完全平方有三項(xiàng),首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;首±尾括號帶平方,尾項(xiàng)符號隨中央。
因式分解:一提(公因式)二套(公式)三分組,細(xì)看幾項(xiàng)不離譜,兩項(xiàng)只用平方差,三項(xiàng)十字相乘法,陣法熟練不馬虎,四項(xiàng)仔細(xì)看清楚,若有三個(gè)平方數(shù)(項(xiàng)),就用一三來分組,否則二二去分組,五項(xiàng)、六項(xiàng)更多項(xiàng),二三、三三試分組,以上若都行不通,拆項(xiàng)、添項(xiàng)看清楚。
“代入”口決:挖去字母換上數(shù)(式),數(shù)字、字母都保留;換上分?jǐn)?shù)或負(fù)數(shù),給它帶上小括弧,原括弧內(nèi)出(現(xiàn))括弧,逐級向下變括弧(小—中—大)
單項(xiàng)式運(yùn)算:加、減、乘、除、乘(開)方,三級運(yùn)算分得清,系數(shù)進(jìn)行同級(運(yùn))算,指數(shù)運(yùn)算降級(進(jìn))行。
一元一次不等式解題的一般步驟:去分母、去括號,移項(xiàng)時(shí)候要變號,同類項(xiàng)、合并好,再把系數(shù)來除掉,兩邊除(以)負(fù)數(shù)時(shí),不等號改向別忘了。
一元一次不等式組的解集:大大取較大,小小取較小,小大,大小取中間,大小,小大無處找。
一元二次不等式、一元一次絕對值不等式的解集:大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。
分式混合運(yùn)算法則:分式四則運(yùn)算,順序乘除加減,乘除同級運(yùn)算,除法符號須變(乘);乘法進(jìn)行化簡,因式分解在先,分子分母相約,然后再行運(yùn)算;加減分母需同,分母化積關(guān)鍵;找出最簡公分母,通分不是很難;變號必須兩處,結(jié)果要求最簡。
分式方程的解法步驟:同乘最簡公分母,化成整式寫清楚,求得解后須驗(yàn)根,原(根)留、增(根)舍別含糊。
最簡根式的條件:最簡根式三條件,號內(nèi)不把分母含,冪指(數(shù))根指(數(shù))要互質(zhì),冪指比根指小一點(diǎn)。
特殊點(diǎn)坐標(biāo)特征:坐標(biāo)平面點(diǎn)(x,y),橫在前來縱在后;(,),(-,),(-,-)和(,-),四個(gè)象限分前后;X軸上y為0,x為0在Y軸。
象限角的平分線:象限角的平分線,坐標(biāo)特征有特點(diǎn),一、三橫縱都相等,二、四橫縱確相反。
平行某軸的直線:平行某軸的直線,點(diǎn)的坐標(biāo)有講究,直線平行X軸,縱坐標(biāo)相等橫不同;直線平行于Y軸,點(diǎn)的橫坐標(biāo)仍照舊。
對稱點(diǎn)坐標(biāo):對稱點(diǎn)坐標(biāo)要記牢,相反數(shù)位置莫混淆,X軸對稱y相反,Y軸對稱,x前面添負(fù)號;原點(diǎn)對稱最好記,橫縱坐標(biāo)變符號。
自變量的取值范圍:分式分母不為零,偶次根下負(fù)不行;零次冪底數(shù)不為零,整式、奇次根全能行。
函數(shù)圖像的移動規(guī)律:若把一次函數(shù)解析式寫成y=k(x0)b、二次函數(shù)的解析式寫成y=a(xh)2k的形式,則用下面后的口訣“左右平移在括號,上下平移在末稍,左正右負(fù)須牢記,上正下負(fù)錯(cuò)不了”。
一次函數(shù)圖像與性質(zhì)口訣:一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠(yuǎn)。
二次函數(shù)圖像與性質(zhì)口訣:二次函數(shù)拋物線,圖象對稱是關(guān)鍵;開口、頂點(diǎn)和交點(diǎn),它們確定圖象現(xiàn);開口、大小由a斷,c與Y軸來相見,b的符號較特別,符號與a相關(guān)聯(lián);頂點(diǎn)位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點(diǎn)坐標(biāo)最重要,一般式配方它就現(xiàn),橫標(biāo)即為對稱軸,縱標(biāo)函數(shù)最值見。若求對稱軸位置,符號反,一般、頂點(diǎn)、交點(diǎn)式,不同表達(dá)能互換。
反比例函數(shù)圖像與性質(zhì)口訣:反比例函數(shù)有特點(diǎn),雙曲線相背離的遠(yuǎn);k為正,圖在一、三(象)限,k為負(fù),圖在二、四(象)限;圖在一、三函數(shù)減,兩個(gè)分支分別減。圖在二、四正相反,兩個(gè)分支分別添;線越長越近軸,永遠(yuǎn)與軸不沾邊。
巧記三角函數(shù)定義:初中所學(xué)的三角函數(shù)有正弦、余弦、正切、余切,它們實(shí)際是三角形邊的比值,可以把兩個(gè)字用/隔開,再用下面的一句話記定義:一位不高明的廚子教徒弟殺魚,說了這么一句話:正對魚磷(余鄰)直刀切。正:正弦或正切,對:對邊即正是對;余:余弦或余弦,鄰:鄰邊即余是鄰;切是直角邊。
三角函數(shù)的增減性:正增余減。
特殊三角函數(shù)值記憶:首先記住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子記口訣“123,321,三九二十七”既可。
數(shù)字巧記:=1.414(意思意思而已)=1.7321(三人一起商量)=2.236(吾量量山路)=2.449(糧食是酒)=2.645(二流是我)=2.828(二爸二爸)=3.16(山藥,六兩)
平行四邊形的判定:要證平行四邊形,兩個(gè)條件才能行,一證對邊都相等,或證對邊都平行,一組對邊也可以,必須相等且平行。對角線,是個(gè)寶,互相平分“跑不了”,對角相等也有用,“兩組對角”才能成。
梯形問題的輔助線:移動梯形對角線,兩腰之和成一線;平行移動一條腰,兩腰同在“△”現(xiàn);延長兩腰交一點(diǎn),“△”中有平行線;作出梯形兩高線,矩形顯示在眼前;已知腰上一中線,莫忘作出中位線。
添加輔助線歌:輔助線,怎么添?找出規(guī)律是關(guān)鍵,題中若有角(平)分線,可向兩邊作垂線;線段垂直平分線,引向兩端把線連,三角形邊兩中點(diǎn),連接則成中位線;三角形中有中線,延長中線翻一番。
圓的證明歌:圓的證明不算難,常把半徑直徑連;有弦可作弦心距,它定垂直平分弦;直徑是圓最大弦,直圓周角立上邊,它若垂直平分弦,垂徑、射影響耳邊;還有與圓有關(guān)角,勿忘相互有關(guān)聯(lián),圓周、圓心、弦切角,細(xì)找關(guān)系把線連。同弧圓周角相等,證題用它最多見,圓中若有弦切角,夾弧找到就好辦;圓有內(nèi)接四邊形,對角互補(bǔ)記心間,外角等于內(nèi)對角,四邊形定內(nèi)接圓;直角相對或共弦,試試加個(gè)輔助圓;若是證題打轉(zhuǎn)轉(zhuǎn),四點(diǎn)共圓可解難;要想證明圓切線,垂直半徑過外端,直線與圓有共點(diǎn),證垂直來半徑連,直線與圓未給點(diǎn),需證半徑作垂線;四邊形有內(nèi)切圓,對邊和等是條件;如果遇到圓與圓,弄清位置很關(guān)鍵,兩圓相切作公切,兩圓相交連公弦。
高二數(shù)學(xué)的六大學(xué)習(xí)方法
一、溫故法
學(xué)習(xí)新概念前,如果能對孩子認(rèn)知結(jié)構(gòu)中原有的適當(dāng)概念作一些結(jié)構(gòu)上的變化來引進(jìn)新概念,則有利于促進(jìn)新概念的形成。
二、操作法
對有些概念的教學(xué),可以從感性材料出發(fā),讓孩子在操作中去發(fā)現(xiàn)概念的發(fā)生和發(fā)展過程。
三、類比法
這種方法有利于分析兩相關(guān)概念的異同,歸納出新授內(nèi)容有關(guān)知識;有利于幫助孩子架起新、舊知識的橋梁,促進(jìn)知識遷移,提高探索能力。
四、喻理法
為正確理解某一概念,以實(shí)例或生活中的趣事、典故作比喻,引出新概念.
五、置疑法
這種方法是通過揭示教學(xué)自身的矛盾來引入概念,以突出引進(jìn)新概念的必要性和合理性,調(diào)動孩子了解新概念的強(qiáng)烈的動機(jī)和愿望。
六、創(chuàng)境法
如在講相遇問題時(shí),為讓對相向運(yùn)動的各種可能的情況有所感受,可以從研究"鼓掌時(shí)兩只手怎樣運(yùn)動"開始。通過拍手體驗(yàn),在邊問、邊議中逐步講解。實(shí)踐證明,如此猶如身臨其境去體驗(yàn)并理解有關(guān)知識,能很快準(zhǔn)確地掌握相關(guān)的數(shù)學(xué)概念。
相關(guān)文章:
2.高中數(shù)學(xué)函數(shù)的學(xué)習(xí)方法
3.數(shù)學(xué)學(xué)習(xí)技巧:聯(lián)想記憶法