2022高二數(shù)學(xué)知識點(diǎn)總結(jié)
數(shù)學(xué)是研究數(shù)量、結(jié)構(gòu)、變化、空間以及信息等概念的一門學(xué)科,從某種角度看屬于形式科學(xué)的一種。下面是小編給大家?guī)淼?a href='http://www.zbfsgm.com/xuexiff/gaoershuxue/' target='_blank'>高二數(shù)學(xué)知識點(diǎn),希望對大家有所幫助。
高二數(shù)學(xué)知識點(diǎn)總結(jié)1
映射與函數(shù):
(1)映射的概念:(2)一一映射:(3)函數(shù)的概念:
二、函數(shù)的三要素:
相同函數(shù)的判斷方法:①對應(yīng)法則;②定義域(兩點(diǎn)必須同時具備)
(1)函數(shù)解析式的求法:
①定義法(拼湊):②換元法:③待定系數(shù)法:④賦值法:
(2)函數(shù)定義域的求法:
①含參問題的定義域要分類討論;
②對于實(shí)際問題,在求出函數(shù)解析式后;必須求出其定義域,此時的定義域要根據(jù)實(shí)際意義來確定。
(3)函數(shù)值域的求法:
①配方法:轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的特征來求值;常轉(zhuǎn)化為型如:的形式;
②逆求法(反求法):通過反解,用來表示,再由的取值范圍,通過解不等式,得出的取值范圍;常用來解,型如:;
④換元法:通過變量代換轉(zhuǎn)化為能求值域的函數(shù),化歸思想;
⑤三角有界法:轉(zhuǎn)化為只含正弦、余弦的函數(shù),運(yùn)用三角函數(shù)有界性來求值域;
⑥基本不等式法:轉(zhuǎn)化成型如:,利用平均值不等式公式來求值域;
⑦單調(diào)性法:函數(shù)為單調(diào)函數(shù),可根據(jù)函數(shù)的單調(diào)性求值域。
⑧數(shù)形結(jié)合:根據(jù)函數(shù)的幾何圖形,利用數(shù)型結(jié)合的方法來求值域。
高二數(shù)學(xué)知識點(diǎn)總結(jié)2
反函數(shù):
(1)定義:
(2)函數(shù)存在反函數(shù)的條件:
(3)互為反函數(shù)的定義域與值域的關(guān)系:
(4)求反函數(shù)的步驟:①將看成關(guān)于的方程,解出,若有兩解,要注意解的選擇;②將互換,得;③寫出反函數(shù)的定義域(即的值域)。
(5)互為反函數(shù)的圖象間的關(guān)系:
(6)原函數(shù)與反函數(shù)具有相同的單調(diào)性;
(7)原函數(shù)為奇函數(shù),則其反函數(shù)仍為奇函數(shù);原函數(shù)為偶函數(shù),它一定不存在反函數(shù)。
常用的初等函數(shù):
(1)一元一次函數(shù):
(2)一元二次函數(shù):
一般式
兩點(diǎn)式
頂點(diǎn)式
二次函數(shù)求最值問題:首先要采用配方法,化為一般式,
有三個類型題型:
(1)頂點(diǎn)固定,區(qū)間也固定。如:
(2)頂點(diǎn)含參數(shù)(即頂點(diǎn)變動),區(qū)間固定,這時要討論頂點(diǎn)橫坐標(biāo)何時在區(qū)間之內(nèi),何時在區(qū)間之外。
(3)頂點(diǎn)固定,區(qū)間變動,這時要討論區(qū)間中的參數(shù).
等價命題在區(qū)間上有兩根在區(qū)間上有兩根在區(qū)間或上有一根
注意:若在閉區(qū)間討論方程有實(shí)數(shù)解的情況,可先利用在開區(qū)間上實(shí)根分布的情況,得出結(jié)果,在令和檢查端點(diǎn)的情況。
(3)反比例函數(shù):
(4)指數(shù)函數(shù):
指數(shù)函數(shù):y=(a>o,a≠1),圖象恒過點(diǎn)(0,1),單調(diào)性與a的值有關(guān),在解題中,往往要對a分a>1和0
(5)對數(shù)函數(shù):
對數(shù)函數(shù):y=(a>o,a≠1)圖象恒過點(diǎn)(1,0),單調(diào)性與a的值有關(guān),在解題中,往往要對a分a>1和0
注意:
(1)比較兩個指數(shù)或?qū)?shù)的大小的基本方法是構(gòu)造相應(yīng)的指數(shù)或?qū)?shù)函數(shù),若底數(shù)不相同時轉(zhuǎn)化為同底數(shù)的指數(shù)或?qū)?shù),還要注意與1比較或與0比較。
高二數(shù)學(xué)知識點(diǎn)總結(jié)3
函數(shù)的性質(zhì):
函數(shù)的單調(diào)性、奇偶性、周期性
單調(diào)性:定義:注意定義是相對與某個具體的區(qū)間而言。
判定方法有:定義法(作差比較和作商比較)
導(dǎo)數(shù)法(適用于多項(xiàng)式函數(shù))
復(fù)合函數(shù)法和圖像法。
應(yīng)用:比較大小,證明不等式,解不等式。
奇偶性:定義:注意區(qū)間是否關(guān)于原點(diǎn)對稱,比較f(x)與f(-x)的關(guān)系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數(shù);
f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數(shù)。
判別方法:定義法,圖像法,復(fù)合函數(shù)法
應(yīng)用:把函數(shù)值進(jìn)行轉(zhuǎn)化求解。
周期性:定義:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。
其他:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.
應(yīng)用:求函數(shù)值和某個區(qū)間上的函數(shù)解析式。
高二數(shù)學(xué)知識點(diǎn)總結(jié)4
四、圖形變換:函數(shù)圖像變換:(重點(diǎn))要求掌握常見基本函數(shù)的圖像,掌握函數(shù)圖像變換的一般規(guī)律。
常見圖像變化規(guī)律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯(lián)系起來思考)
平移變換y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系數(shù),要先提取系數(shù)。如:把函數(shù)y=f(2x)經(jīng)過平移得到函數(shù)y=f(2x+4)的圖象。
(ⅱ)會結(jié)合向量的平移,理解按照向量(m,n)平移的意義。
對稱變換y=f(x)→y=f(-x),關(guān)于y軸對稱
y=f(x)→y=-f(x),關(guān)于x軸對稱
y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對稱
y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關(guān)于y軸對稱。(注意:它是一個偶函數(shù))
伸縮變換:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具體參照三角函數(shù)的圖象變換。
一個重要結(jié)論:若f(a-x)=f(a+x),則函數(shù)y=f(x)的圖像關(guān)于直線x=a對稱;
2022高二數(shù)學(xué)知識點(diǎn)總結(jié)相關(guān)文章:
★ 高二數(shù)學(xué)下冊知識點(diǎn)總結(jié)
★ 高二數(shù)學(xué)必修二的知識點(diǎn)總結(jié)
★ 高二數(shù)學(xué)會考考試必考知識點(diǎn)
★ 高二數(shù)學(xué)文科重點(diǎn)知識點(diǎn)總結(jié)
★ 高二數(shù)學(xué)上冊知識點(diǎn)總結(jié)
★ 高二數(shù)學(xué)必修五知識點(diǎn)總結(jié)
★ 人教版高二數(shù)學(xué)上冊必修知識點(diǎn)
★ 高二上學(xué)期數(shù)學(xué)教學(xué)總結(jié)2022最新