2023高考數(shù)學(xué)科目??碱}型資料
2023年度高考數(shù)學(xué)科目??碱}型資料
高中數(shù)學(xué)是非常難的,有很多同學(xué)不會(huì)高中數(shù)學(xué)成績(jī)比較差,特別是在做題的時(shí)候,并沒有掌握相關(guān)的知識(shí)點(diǎn)。以下是小編整理的高考數(shù)學(xué)??碱}型資料,希望可以提供給大家進(jìn)行參考和借鑒。
高考數(shù)學(xué)6大題型知識(shí)點(diǎn)
1、三角函數(shù)、向量、解三角形
(1)三角函數(shù)畫圖、性質(zhì)、三角恒等變換、和與差公式。
(2)向量的工具性(平面向量背景)。
(3)正弦定理、余弦定理、解三角形背景。
(4)綜合題、三角題一般用平面向量進(jìn)行“包裝”,講究知識(shí)的交匯性,或?qū)⑷呛瘮?shù)與解三角形有機(jī)融合,
重視三角恒等變換下的性質(zhì)探究,重視考查圖形圖像的變換。
2、概率與統(tǒng)計(jì)
(1)古典概型。
(2)莖葉圖。
(3)直方圖。
(4)回歸方程(2x2列聯(lián)表)。
(5)(理)概率分布、期望、方差、排列組合。概率題貼近生活、貼近實(shí)際,考查等可能 性事件、互斥事件、獨(dú)立事件的概率計(jì)算公 式,難度不算很大
3、立體幾何
(1)平行。
(2)垂直。
(3)角a:異面直線角 b:(理)二面角、線面角。
(4)利用三視圖計(jì)算面積與體積。
(5)文理有一定的差別,理科相關(guān)題目既可以用傳統(tǒng)的幾何法,也可以建立空間直角坐標(biāo) 系,利用法向量等。文科對(duì)立體幾何的考查主 要是空間中平行、垂直關(guān)系的判斷與 證明,表面積體積的計(jì)算,直線與平面所成角的計(jì)算。理科對(duì)立體幾何的考查主要是 空間中平 行、垂直關(guān)系的判斷與證明,表面積體積的計(jì)算, 各類角的計(jì)算。
4、數(shù)列
(1)等差數(shù)列、等比數(shù)列、遞推數(shù)列是考查的熱點(diǎn),數(shù)列通項(xiàng)、數(shù)列前n項(xiàng)的和以及二者之間的關(guān)系。
(2)文理科的區(qū)別較大,理科多出現(xiàn)在壓軸題位置的卷型,理科注重?cái)?shù)學(xué)歸納法。
(3)錯(cuò)位相減法、裂項(xiàng)求和法。
(4)應(yīng)用題。
5、圓錐曲線(橢圓)與圓
(1)橢圓為主線,強(qiáng)調(diào)圓錐曲線與直線的位置關(guān)系,突出韋達(dá)定理或差值法。
(2)圓的方程,圓與直線的位置關(guān)系。
(3)注重橢圓與圓、橢圓與拋物線等的組合題。
6、函數(shù)、導(dǎo)數(shù)與不等式
(1)函數(shù)是該題型的主體:三次函數(shù),指數(shù)函數(shù),對(duì)數(shù)函數(shù)及其復(fù)合函數(shù)。
(2)函數(shù)是考查的核心內(nèi)容,與導(dǎo)數(shù)結(jié)合,基本題型是判斷函數(shù)的單調(diào)性,求函數(shù)的最 值(極值),求曲線的切線方程,對(duì)參數(shù)取值范 圍、根的分布的探求,對(duì)參數(shù)的分 類討論以及代數(shù)推理等等。
(3)利用基本不等式、對(duì)勾函數(shù)性質(zhì)。
高考數(shù)學(xué)就考這七個(gè)題型
第一,函數(shù)與導(dǎo)數(shù)
主要考查集合運(yùn)算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。
第二,平面向量與三角函數(shù)、三角變換及其應(yīng)用
這一部分是高考的重點(diǎn)但不是難點(diǎn),主要出一些基礎(chǔ)題或中檔題。
第三,數(shù)列及其應(yīng)用
這部分是高考的重點(diǎn)而且是難點(diǎn),主要出一些綜合題。
第四,不等式
主要考查不等式的求解和證明,而且很少單獨(dú)考查,主要是在解答題中比較大小。是高考的重點(diǎn)和難點(diǎn)。
第五,概率和統(tǒng)計(jì)
這部分和我們的生活聯(lián)系比較大,屬應(yīng)用題。
第六,空間位置關(guān)系的定性與定量分析
主要是證明平行或垂直,求角和距離。
主要考察對(duì)定理的熟悉程度、運(yùn)用程度。
第七,解析幾何
高考的難點(diǎn),運(yùn)算量大,一般含參數(shù)。
高考對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)的考查,既全面又突出重點(diǎn),扎實(shí)的數(shù)學(xué)基礎(chǔ)是成功解題的關(guān)鍵。
高考數(shù)學(xué)大題題型歸納
一、三角函數(shù)或數(shù)列
數(shù)列是高考必考的內(nèi)容之一。高考對(duì)這個(gè)知識(shí)點(diǎn)的考查非常全面。每年都會(huì)有等差數(shù)列,等比數(shù)列的考題,而且經(jīng)常以綜合題出現(xiàn),也就是說把數(shù)列知識(shí)和指數(shù)函數(shù)、對(duì)數(shù)函數(shù)和不等式等其他知識(shí)點(diǎn)綜合起來。
近幾年來,關(guān)于數(shù)列方面的考題題主要包含以下幾個(gè)方面:
(1)數(shù)列基本知識(shí)考查,主要包括基本的等差數(shù)列和等比數(shù)列概念以及通項(xiàng)公式和求和公式。
(2)把數(shù)列知識(shí)和其他知識(shí)點(diǎn)相結(jié)合,主要包括數(shù)列知識(shí)和函數(shù)、方程、不等式、三角、幾何等其他知識(shí)相結(jié)合。
(3)應(yīng)用題中的數(shù)列問題,一般是以增長(zhǎng)率問題出現(xiàn)。
二、立體幾何
高考立體幾何試題一般共有4道(選擇、填空題3道,解答題1道),共計(jì)總分27分左右,考查的知識(shí)點(diǎn)在20個(gè)以內(nèi)。選擇填空題考核立幾中的計(jì)算型問題,而解答題著重考查立幾中的邏輯推理型問題,當(dāng)然,二者均應(yīng)以正確的空間想象為前提。隨著新的課程改革的進(jìn)一步實(shí)施,立體幾何考題正朝著多一點(diǎn)思考,少一點(diǎn)計(jì)算的發(fā)展。從歷年的考題變化看,以簡(jiǎn)單幾何體為載體的線面位置關(guān)系的論證,角與距離的探求是常考常新的熱門話題。
三、統(tǒng)計(jì)與概率
1.掌握分類計(jì)數(shù)原理與分步計(jì)數(shù)原理,并能用它們分析和解決一些簡(jiǎn)單的應(yīng)用問題。
2.理解排列的意義,掌握排列數(shù)計(jì)算公式,并能用它解決一些簡(jiǎn)單的應(yīng)用問題。
3.理解組合的意義,掌握組合數(shù)計(jì)算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡(jiǎn)單的應(yīng)用問題。
4.掌握二項(xiàng)式定理和二項(xiàng)展開式的性質(zhì),并能用它們計(jì)算和證明一些簡(jiǎn)單的問題。
5.了解隨機(jī)事件的發(fā)生存在著規(guī)律性和隨機(jī)事件概率的意義。
6.了解等可能性事件的概率的意義,會(huì)用排列組合的基本公式計(jì)算一些等可能性事件的概率。
7.了解互斥事件、相互獨(dú)立事件的意義,會(huì)用互斥事件的概率加法公式與相互獨(dú)立事件的概率乘法公式計(jì)算一些事件的概率。
8.會(huì)計(jì)算事件在n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率.
四、解析幾何(圓錐曲線)
高考解析幾何剖析:
1、很多高考問題都是以平面上的點(diǎn)、直線、曲線(如圓、橢圓、拋物線、雙曲線)這三大類幾何元素為基礎(chǔ)構(gòu)成的圖形的問題;
2、演繹規(guī)則就是代數(shù)的演繹規(guī)則,或者說就是列方程、解方程的規(guī)則。
有了以上兩點(diǎn)認(rèn)識(shí),我們可以毫不猶豫地下這么一個(gè)結(jié)論,那就是解決高考解析幾何問題無外乎做兩項(xiàng)工作:
(1)、幾何問題代數(shù)化。
(2)、用代數(shù)規(guī)則對(duì)代數(shù)化后的問題進(jìn)行處理。
五、函數(shù)與導(dǎo)數(shù)
導(dǎo)數(shù)是微積分的初步知識(shí),是研究函數(shù),解決實(shí)際問題的有力工具。在高中階段對(duì)于導(dǎo)數(shù)的學(xué)習(xí),主要是以下幾個(gè)方面:
1.導(dǎo)數(shù)的常規(guī)問題:
(1)刻畫函數(shù)(比初等方法精確細(xì)微);
(2)同幾何中切線聯(lián)系(導(dǎo)數(shù)方法可用于研究平面曲線的切線);
(3)應(yīng)用問題(初等方法往往技巧性要求較高,而導(dǎo)數(shù)方法顯得簡(jiǎn)便)等關(guān)于次多項(xiàng)式的導(dǎo)數(shù)問題屬于較難類型。
2.關(guān)于函數(shù)特征,最值問題較多,所以有必要專項(xiàng)討論,導(dǎo)數(shù)法求最值要比初等方法快捷簡(jiǎn)便。
3.導(dǎo)數(shù)與解析幾何或函數(shù)圖象的混合問題是一種重要類型,也是高考(微博)中考察綜合能力的一個(gè)方向,應(yīng)引起注意。