高中數(shù)學(xué)解題方法技巧匯總
數(shù)學(xué)題速度慢,不僅會拉長平時作業(yè)時間,減少自主學(xué)習(xí)時間,更會在考試中影響整體做題速度,很可能會做的題也來不及解答。下面是小編為大家整理的關(guān)于高中數(shù)學(xué)解題方法技巧,希望對您有所幫助。歡迎大家閱讀參考學(xué)習(xí)!
1高中數(shù)學(xué)解題方法技巧匯總
數(shù)學(xué)高考題的容量在120分鐘時間內(nèi)完成大小26個題,時間很緊張,不允許做大量細(xì)致的解后檢驗(yàn),所以要盡量準(zhǔn)確運(yùn)算(關(guān)鍵步驟,力求準(zhǔn)確,寧慢勿快),立足一次成功。解題速度是建立在解題準(zhǔn)確度基礎(chǔ)上,更何況數(shù)學(xué)題的中間數(shù)據(jù)常常不但從“數(shù)量”上,而且從“性質(zhì)”上影響著后繼各步的解答。
2解題方法
以退求進(jìn),立足特殊
發(fā)散一般對于一個較一般的問題,若一時不能取得一般思路,可以采取化一般為特殊(如用特殊法解選擇題),化抽象為具體,化整體為局部,化參量為常量,化較弱條件為較強(qiáng)條件,等等??傊?,退到一個你能夠解決的程度上,通過對“特殊”的思考與解決,啟發(fā)思維,達(dá)到對“一般”的解決。
逆向思考,正難則反
對一個問題正面思考發(fā)生思維受阻時,用逆向思維的方法去探求新的解題途徑,往往能得到突破性的進(jìn)展,如果順向推有困難就逆推,直接證有困難就反證,如用分析法,從肯定結(jié)論或中間步驟入手,找充分條件;用反證法,從否定結(jié)論入手找必要條件。
面對難題,講究方法
對一個疑難問題,確實(shí)啃不動時,一個明智的解題方法是:將它劃分為一個個子問題或一系列的步驟,先解決問題的一部分,即能解決到什么程度就解決到什么程度,能演算幾步就寫幾步,每進(jìn)行一步就可得到這一步的分?jǐn)?shù)。如從最初的把文字語言譯成符號語言,把條件和目標(biāo)譯成數(shù)學(xué)表達(dá)式,設(shè)應(yīng)用題的未知數(shù),設(shè)軌跡題的動點(diǎn)坐標(biāo),依題意正確畫出圖形等,都能得分。
還有象完成數(shù)學(xué)歸納法的第一步,分類討論,反證法的簡單情形等,都能得分。而且可望在上述處理中,從感性到理性,從特殊到一般,從局部到整體,產(chǎn)生頓悟,形成思路,獲得解題成功。解題過程卡在一中間環(huán)節(jié)上時,可以承認(rèn)中間結(jié)論,往下推,看能否得到正確結(jié)論,如得不出,說明此途徑不對,立即否得到正確結(jié)論,如得不出,說明此途徑不對,立即改變方向,尋找它途;如能得到預(yù)期結(jié)論,就再回頭集中力量攻克這一過渡環(huán)節(jié)。若因時間限制,中間結(jié)論來不及得到證實(shí),就只好跳過這一步,寫出后繼各步,一直做到底;另外,若題目有兩問,第一問做不上,可以第一問為“已知”,完成第二問,這都叫跳步解答。也許后來由于解題的正遷移對中間步驟想起來了,或在時間允許的情況下,經(jīng)努力而攻下了中間難點(diǎn),可在相應(yīng)題尾補(bǔ)上。
3解題方法
學(xué)會畫圖
畫圖是一個翻譯的過程,把解題時的抽象思維,變成了形象思維,從而降低了解題難度。有些題目,只要分析圖一畫出來,其中的關(guān)系就變得一目了然。尤其是對于幾何題,包括解析幾何題,若不會畫圖,有時簡直是無從下手。因此,牢記各種題型的基本作圖方法,牢記各種函數(shù)的圖像和意義及演變過程和條件,對于提高解題速度非常重要。
先易后難,逐步增加習(xí)題的難度
人們認(rèn)識事物的過程都是從簡單到復(fù)雜。簡單的問題解多了,從而使概念清晰了,對公式、定理以及解題步驟熟悉了,解題時就會形成跳躍性思維,解題的速度就會大大提高。我們在學(xué)習(xí)時,應(yīng)根據(jù)自己的能力,先去解那些看似簡單,卻很重要的習(xí)題,以不斷提高解題速度和解題能力。隨著速度和能力的提高,再逐漸增加難度,就會達(dá)到事半功倍的效果。
限時答題,先提速后糾正錯誤
很多同學(xué)做題慢的一個重要原因就是平時做作業(yè)習(xí)慣了拖延時間,導(dǎo)致形成了一個不太好的解題習(xí)慣。所以,提高解題速度就要先解決“拖延癥”。比較有效的方式是限時答題,例如在做數(shù)學(xué)作業(yè)時,給自己限時,先不管正確率,首先保證在規(guī)定時間內(nèi)完成數(shù)學(xué)作業(yè),然后再去糾正錯誤。這個過程對提高書寫速度和思考效率都有較好的作用。你習(xí)慣了一個較快的思考和書寫后,解題速度自然就會提高,及改正了拖延的毛病,也提高了成績。
4解題方法
熟悉基本的解題步驟和解題方法
解題的過程,是一個思維的過程。對一些基本的、常見的問題,前人已經(jīng)總結(jié)出了一些基本的解題思路和常用的解題程序,我們一般只要順著這些解題的思路,遵循這些解題的步驟,往往很容易找到習(xí)題的答案。
審題要認(rèn)真仔細(xì)
對于一道具體的習(xí)題,解題時最重要的環(huán)節(jié)是審題。審題的第一步是讀題,這是獲取信息量和思考的過程。讀題要慢,一邊讀,一邊想,應(yīng)特別注意每一句話的內(nèi)在涵義,并從中找出隱含條件。有些學(xué)生沒有養(yǎng)成讀題、思考的習(xí)慣,心里著急,匆匆一看,就開始解題,結(jié)果常常是漏掉了一些信息,花了很長時間解不出來,還找不到原因,想快卻慢了。所以,在實(shí)際解題時,應(yīng)特別注意,審題要認(rèn)真、仔細(xì)。
論證演算的方法
這又可以依其適應(yīng)面分為兩個層次:第一層次是適應(yīng)面較寬的求解方法,如消元法、換元法、降次法、待定系數(shù)法、反證法、同一法、數(shù)學(xué)歸納法(即遞推法)、坐標(biāo)法、三角法、數(shù)形結(jié)合法、構(gòu)造法、配方法等等;第二層次是適應(yīng)面較窄的求解技巧,如因式分解法以及因式分解里的“裂項(xiàng)法”、函數(shù)作圖的“描點(diǎn)法”、以及三角函數(shù)作圖的“五點(diǎn)法”、幾何證明里的“截長補(bǔ)短法”、“補(bǔ)形法”、數(shù)列求和里的“裂項(xiàng)相消法”等。
高中數(shù)學(xué)解題方法技巧匯總相關(guān)文章: