国产成人v爽在线免播放观看,日韩欧美色,久久99国产精品久久99软件,亚洲综合色网站,国产欧美日韩中文久久,色99在线,亚洲伦理一区二区

學習啦>學習方法>高中學習方法>高三學習方法>高三數(shù)學>

高三數(shù)學總單元知識點概括

時間: 贊銳0 分享

數(shù)學一般方法主要是數(shù)學解題的具體方法及相關技能、技巧,比如高中數(shù)學里的配方法、換元法、待定系數(shù)法和判別式法等。以下是小編給大家整理的高三數(shù)學總單元知識點概括,希望能助你一臂之力!

高三數(shù)學總單元知識點概括1

一、排列

1定義

(1)從n個不同元素中取出m個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一排列。

(2)從n個不同元素中取出m個元素的所有排列的個數(shù),叫做從n個不同元素中取出m個元素的排列數(shù),記為Amn.

2排列數(shù)的公式與性質

(1)排列數(shù)的公式:Amn=n(n-1)(n-2)…(n-m+1)

特例:當m=n時,Amn=n!=n(n-1)(n-2)…×3×2×1

規(guī)定:0!=1

二、組合

1定義

(1)從n個不同元素中取出m個元素并成一組,叫做從n個不同元素中取出m個元素的一個組合

(2)從n個不同元素中取出m個元素的所有組合的個數(shù),叫做從n個不同元素中取出m個元素的組合數(shù),用符號Cmn表示。

2比較與鑒別

由排列與組合的定義知,獲得一個排列需要“取出元素”和“對取出元素按一定順序排成一列”兩個過程,而獲得一個組合只需要“取出元素”,不管怎樣的順序并成一組這一個步驟。

排列與組合的區(qū)別在于組合僅與選取的元素有關,而排列不僅與選取的元素有關,而且還與取出元素的順序有關。因此,所給問題是否與取出元素的順序有關,是判斷這一問題是排列問題還是組合問題的理論依據(jù)。

三、排列組合與二項式定理知識點

1.計數(shù)原理知識點

①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分類)

2.排列(有序)與組合(無序)

Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!

Cnm=n!/(n-m)!m!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!

3.排列組合混合題的解題原則:先選后排,先分再排

排列組合題的主要解題方法:優(yōu)先法:以元素為主,應先滿足特殊元素的要求,再考慮其他元素.以位置為主考慮,即先滿足特殊位置的要求,再考慮其他位置.

捆綁法(集團元素法,把某些必須在一起的元素視為一個整體考慮)

插空法(解決相間問題)間接法和去雜法等等

在求解排列與組合應用問題時,應注意:

(1)把具體問題轉化或歸結為排列或組合問題;

(2)通過分析確定運用分類計數(shù)原理還是分步計數(shù)原理;

(3)分析題目條件,避免“選取”時重復和遺漏;

(4)列出式子計算和作答.

經(jīng)常運用的數(shù)學思想是:

①分類討論思想;②轉化思想;③對稱思想.

4.二項式定理知識點:

①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

②主要性質和主要結論:對稱性Cnm=Cnn-m

二項式系數(shù)在中間。(要注意n為奇數(shù)還是偶數(shù),答案是中間一項還是中間兩項)

所有二項式系數(shù)的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

奇數(shù)項二項式系數(shù)的和=偶數(shù)項而是系數(shù)的和

Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

③通項為第r+1項:Tr+1=Cnran-rbr作用:處理與指定項、特定項、常數(shù)項、有理項等有關問題。

5.二項式定理的應用:解決有關近似計算、整除問題,運用二項展開式定理并且結合放縮法證明與指數(shù)有關的不等式。

6.注意二項式系數(shù)與項的系數(shù)(字母項的系數(shù),指定項的系數(shù)等,指運算結果的系數(shù))的區(qū)別,在求某幾項的系數(shù)的和時注意賦值法的應用。

高三數(shù)學總單元知識點概括2

(1)不等關系

感受在現(xiàn)實世界和日常生活中存在著大量的不等關系,了解不等式(組)的實際背景。

(2)一元二次不等式

①經(jīng)歷從實際情境中抽象出一元二次不等式模型的過程。

②通過函數(shù)圖象了解一元二次不等式與相應函數(shù)、方程的聯(lián)系。

③會解一元二次不等式,對給定的一元二次不等式,嘗試設計求解的程序框圖。

(3)二元一次不等式組與簡單線性規(guī)劃問題

①從實際情境中抽象出二元一次不等式組。

②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組(參見例2)。

③從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決(參見例3)。

(4)基本不等式:

①探索并了解基本不等式的證明過程。

②會用基本不等式解決簡單的(小)值問題。

高三數(shù)學總單元知識點概括3

1、圓柱體:

表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

2、圓錐體:

表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

3、正方體

a-邊長,S=6a2,V=a3

4、長方體

a-長,b-寬,c-高S=2(ab+ac+bc)V=abc

5、棱柱

S-底面積h-高V=Sh

6、棱錐

S-底面積h-高V=Sh/3

7、棱臺

S1和S2-上、下底面積h-高V=h[S1+S2+(S1S2)^1/2]/3

8、擬柱體

S1-上底面積,S2-下底面積,S0-中截面積

h-高,V=h(S1+S2+4S0)/6

9、圓柱

r-底半徑,h-高,C—底面周長

S底—底面積,S側—側面積,S表—表面積C=2πr

S底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h

10、空心圓柱

R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)

11、直圓錐

r-底半徑h-高V=πr^2h/3

12、圓臺

r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/3

13、球

r-半徑d-直徑V=4/3πr^3=πd^3/6

14、球缺

h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

15、球臺

r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6

16、圓環(huán)體

R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑

V=2π2Rr2=π2Dd2/4

17、桶狀體

D-桶腹直徑d-桶底直徑h-桶高

V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)

V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

高三數(shù)學總單元知識點概括相關文章

高三數(shù)學知識點總結歸納

高三數(shù)學知識點梳理匯總

高三數(shù)學知識點總結

高三年級數(shù)學知識點整理總結

高三數(shù)學重點知識總結大全

高三數(shù)學知識點總結大全

高考數(shù)學知識點歸納整理

人教版高三數(shù)學知識點總結

高三數(shù)學知識點考點總結大全

高三數(shù)學重要知識點總結

高三數(shù)學總單元知識點概括

數(shù)學一般方法主要是數(shù)學解題的具體方法及相關技能、技巧,比如高中數(shù)學里的配方法、換元法、待定系數(shù)法和判別式法等。以下是小編給大家整理的高三數(shù)學總單元知識點概括,希望能助你一臂之力!高三數(shù)學總單元知識點概
推薦度:
點擊下載文檔文檔為doc格式

精選文章

  • 高三數(shù)學必修書的詳細知識點
    高三數(shù)學必修書的詳細知識點

    通過對數(shù)學解題過程中最富有特色的典型智力活動進行分析和歸納,可以提煉出分析、解決數(shù)學問題的規(guī)律來,也就是要先弄清問題,再擬定解題計劃,接

  • 高三學年數(shù)學的全套知識點概括
    高三學年數(shù)學的全套知識點概括

    即使是復習過的內容仍須定期鞏固,但是復習的次數(shù)應隨時間的增長而逐步減小,間隔也可以逐漸拉長。可以當天鞏固新知識,每周進行周小結,每月進行

  • 高三數(shù)學重要溫習的知識點分析
    高三數(shù)學重要溫習的知識點分析

    數(shù)學能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想象能力和分析解決問題能力共五大能力。這些能力是在不同的數(shù)學學習環(huán)境中得到培養(yǎng)的

  • 高三數(shù)學課堂必講必學知識點
    高三數(shù)學課堂必講必學知識點

    在平時學習中要注意開發(fā)不同的學習場所,參與一切有益的學習實踐活動,如數(shù)學第二課堂、數(shù)學競賽、智力競賽等活動。因為這樣才能最高效幫助你提高

1071057