2020屆高三數(shù)學(xué)復(fù)習(xí)必備知識(shí)點(diǎn)
對(duì)于那些從小就不喜歡數(shù)學(xué),對(duì)數(shù)學(xué)不來(lái)感的同學(xué),想要在高考中拿到高分簡(jiǎn)直是要比登天還難,接下來(lái)小編為大家整理了高三數(shù)學(xué)學(xué)習(xí)內(nèi)容,一起來(lái)看看吧!
2020屆高三數(shù)學(xué)復(fù)習(xí)必備知識(shí)點(diǎn)
1、混淆命題的否定與否命題
命題的“否定”與命題的“否命題”是兩個(gè)不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對(duì)“若p,則q”形式的命題而言,既要否定條件也要否定結(jié)論。
2、忽視集合元素的三性致誤
集合中的元素具有確定性、無(wú)序性、互異性,集合元素的三性中互異性對(duì)解題的影響最大,特別是帶有字母參數(shù)的集合,實(shí)際上就隱含著對(duì)字母參數(shù)的一些要求。
3、判斷函數(shù)奇偶性忽略定義域致誤
判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個(gè)函數(shù)具備奇偶性的必要條件是這個(gè)函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱(chēng),如果不具備這個(gè)條件,函數(shù)一定是非奇非偶函數(shù)。
4、函數(shù)零點(diǎn)定理使用不當(dāng)致誤
如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖像是一條連續(xù)的曲線(xiàn),并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),但f(a)f(b)>0時(shí),不能否定函數(shù)y=f(x)在(a,b)內(nèi)有零點(diǎn)。函數(shù)的零點(diǎn)有“變號(hào)零點(diǎn)”和“不變號(hào)零點(diǎn)”,對(duì)于“不變號(hào)零點(diǎn)”函數(shù)的零點(diǎn)定理是“無(wú)能為力”的,在解決函數(shù)的零點(diǎn)問(wèn)題時(shí)要注意這個(gè)問(wèn)題。
5、函數(shù)的單調(diào)區(qū)間理解不準(zhǔn)致誤
在研究函數(shù)問(wèn)題時(shí)要時(shí)時(shí)刻刻想到“函數(shù)的圖像”,學(xué)會(huì)從函數(shù)圖像上去分析問(wèn)題、尋找解決問(wèn)題的方法。對(duì)于函數(shù)的幾個(gè)不同的單調(diào)遞增(減)區(qū)間,切忌使用并集,只要指明這幾個(gè)區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。
6、三角函數(shù)的單調(diào)性判斷致誤
對(duì)于函數(shù)y=Asin(ωx+φ)的單調(diào)性,當(dāng)ω>0時(shí),由于內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞增的,所以該函數(shù)的單調(diào)性和y=sin x的單調(diào)性相同,故可完全按照函數(shù)y=sin x的單調(diào)區(qū)間解決;但當(dāng)ω<0時(shí),內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞減的,此時(shí)該函數(shù)的單調(diào)性和函數(shù)y=sinx的單調(diào)性相反,就不能再按照函數(shù)y=sinx的單調(diào)性解決,一般是根據(jù)三角函數(shù)的奇偶性將內(nèi)層函數(shù)的系數(shù)變?yōu)檎龜?shù)后再加以解決。對(duì)于帶有絕對(duì)值的三角函數(shù)應(yīng)該根據(jù)圖像,從直觀上進(jìn)行判斷。
7、向量夾角范圍不清致誤
解題時(shí)要全面考慮問(wèn)題。數(shù)學(xué)試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時(shí)把這些因素考慮到,是解題成功的關(guān)鍵,如當(dāng)a·b<0時(shí),a與b的夾角不一定為鈍角,要注意θ=π的情況。
8、忽視零向量致誤
零向量是向量中最特殊的向量,規(guī)定零向量的長(zhǎng)度為0,其方向是任意的,零向量與任意向量都共線(xiàn)。它在向量中的位置正如實(shí)數(shù)中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會(huì)出錯(cuò),考生應(yīng)給予足夠的重視。
9、對(duì)數(shù)列的定義、性質(zhì)理解錯(cuò)誤
等差數(shù)列的前n項(xiàng)和在公差不為零時(shí)是關(guān)于n的常數(shù)項(xiàng)為零的二次函數(shù);一般地,有結(jié)論“若數(shù)列{an}的前n項(xiàng)和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差數(shù)列。
10、an與Sn關(guān)系不清致誤
在數(shù)列問(wèn)題中,數(shù)列的通項(xiàng)an與其前n項(xiàng)和Sn之間存在下列關(guān)系:an=S1,n=1,Sn-Sn-1,n≥2。這個(gè)關(guān)系對(duì)任意數(shù)列都是成立的,但要注意的是這個(gè)關(guān)系式是分段的,在n=1和n≥2時(shí)這個(gè)關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯(cuò)的一個(gè)地方,在使用這個(gè)關(guān)系式時(shí)要牢牢記住其“分段”的特點(diǎn)。
11、錯(cuò)位相減求和項(xiàng)處理不當(dāng)致誤
錯(cuò)位相減求和法的適用條件:數(shù)列是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列對(duì)應(yīng)項(xiàng)的乘積所組成的,求其前n項(xiàng)和?;痉椒ㄊ窃O(shè)這個(gè)和式為Sn,在這個(gè)和式兩端同時(shí)乘以等比數(shù)列的公比得到另一個(gè)和式,這兩個(gè)和式錯(cuò)一位相減,就把問(wèn)題轉(zhuǎn)化為以求一個(gè)等比數(shù)列的前n項(xiàng)和或前n-1項(xiàng)和為主的求和問(wèn)題.這里最容易出現(xiàn)問(wèn)題的就是錯(cuò)位相減后對(duì)剩余項(xiàng)的處理。
12、不等式性質(zhì)應(yīng)用不當(dāng)致誤
在使用不等式的基本性質(zhì)進(jìn)行推理論證時(shí)一定要準(zhǔn)確,特別是不等式兩端同時(shí)乘以或同時(shí)除以一個(gè)數(shù)式、兩個(gè)不等式相乘、一個(gè)不等式兩端同時(shí)n次方時(shí),一定要注意使其能夠這樣做的條件,如果忽視了不等式性質(zhì)成立的前提條件就會(huì)出現(xiàn)錯(cuò)誤。
13、數(shù)列中的最值錯(cuò)誤
數(shù)列問(wèn)題中其通項(xiàng)公式、前n項(xiàng)和公式都是關(guān)于正整數(shù)n的函數(shù),要善于從函數(shù)的觀點(diǎn)認(rèn)識(shí)和理解數(shù)列問(wèn)題。數(shù)列的通項(xiàng)an與前n項(xiàng)和Sn的關(guān)系是高考的命題重點(diǎn),解題時(shí)要注意把n=1和n≥2分開(kāi)討論,再看能不能統(tǒng)一。在關(guān)于正整數(shù)n的二次函數(shù)中其取最值的點(diǎn)要根據(jù)正整數(shù)距離二次函數(shù)的對(duì)稱(chēng)軸的遠(yuǎn)近而定。
14、不等式恒成立問(wèn)題致誤
解決不等式恒成立問(wèn)題的常規(guī)求法是:借助相應(yīng)函數(shù)的單調(diào)性求解,其中的主要方法有數(shù)形結(jié)合法、變量分離法、主元法。通過(guò)最值產(chǎn)生結(jié)論。應(yīng)注意恒成立與存在性問(wèn)題的區(qū)別,如對(duì)任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)-g(x)≤0的恒成立問(wèn)題,但對(duì)存在x∈[a,b],使f(x)≤g(x)成立,則為存在性問(wèn)題,即f(x)min≤g(x)max,應(yīng)特別注意兩函數(shù)中的最大值與最小值的關(guān)系。
15、忽視三視圖中的實(shí)、虛線(xiàn)致誤
三視圖是根據(jù)正投影原理進(jìn)行繪制,嚴(yán)格按照“長(zhǎng)對(duì)正,高平齊,寬相等”的規(guī)則去畫(huà),若相鄰兩物體的表面相交,表面的交線(xiàn)是它們的原分界線(xiàn),且分界線(xiàn)和可視輪廓線(xiàn)都用實(shí)線(xiàn)畫(huà)出,不可見(jiàn)的輪廓線(xiàn)用虛線(xiàn)畫(huà)出,這一點(diǎn)很容易疏忽。
16、面積體積計(jì)算轉(zhuǎn)化不靈活致誤
面積、體積的計(jì)算既需要學(xué)生有扎實(shí)的基礎(chǔ)知識(shí),又要用到一些重要的思想方法,是高考考查的重要題型.因此要熟練掌握以下幾種常用的思想方法。(1)還臺(tái)為錐的思想:這是處理臺(tái)體時(shí)常用的思想方法。(2)割補(bǔ)法:求不規(guī)則圖形面積或幾何體體積時(shí)常用。(3)等積變換法:充分利用三棱錐的任意一個(gè)面都可作為底面的特點(diǎn),靈活求解三棱錐的體積。(4)截面法:尤其是關(guān)于旋轉(zhuǎn)體及與旋轉(zhuǎn)體有關(guān)的組合問(wèn)題,常畫(huà)出軸截面進(jìn)行分析求解。
17、忽視基本不等式應(yīng)用條件致誤
利用基本不等式a+b≥2ab以及變式ab≤a+b22等求函數(shù)的最值時(shí),務(wù)必注意a,b為正數(shù)(或a,b非負(fù)),ab或a+b其中之一應(yīng)是定值,特別要注意等號(hào)成立的條件。對(duì)形如y=ax+bx(a,b>0)的函數(shù),在應(yīng)用基本不等式求函數(shù)最值時(shí),一定要注意ax,bx的符號(hào),必要時(shí)要進(jìn)行分類(lèi)討論,另外要注意自變量x的取值范圍,在此范圍內(nèi)等號(hào)能否取到。
高考數(shù)學(xué)答題套路
高考數(shù)學(xué)答題方法
第一類(lèi)問(wèn)題———高考數(shù)學(xué)遺憾之錯(cuò)。就是分明會(huì)做,反而做錯(cuò)了的題;比如說(shuō),“審題之錯(cuò)”是由于審題出現(xiàn)失誤,看錯(cuò)數(shù)字等造成的;“計(jì)算之錯(cuò)”是由于計(jì)算出現(xiàn)差錯(cuò)造成的;“抄寫(xiě)之錯(cuò)”是在草稿紙上做對(duì)了,往試卷上一抄就寫(xiě)錯(cuò)了、漏掉了;“表達(dá)之錯(cuò)”是自己答案正確但與題目要求的表達(dá)不一致,如單位混用等。
第二類(lèi)問(wèn)題———高考數(shù)學(xué)似非之錯(cuò)。理解的不夠透徹,應(yīng)用得不夠自如;回答不嚴(yán)密、不完整;第一遍做對(duì)了,一改反而改錯(cuò)了,或第一遍做錯(cuò)了,后來(lái)又改對(duì)了;一道題做到一半做不下去了等等。
第三類(lèi)問(wèn)題———高考數(shù)學(xué)無(wú)為之錯(cuò)。由于不會(huì),因而答錯(cuò)了或猜的,或者根本沒(méi)有答。這是無(wú)思路、不理解,更談不上應(yīng)用的問(wèn)題。
高考數(shù)學(xué)雖然比較難,但是只要你努力,相信還是可以學(xué)好的,首要的一點(diǎn)就是自己對(duì)自己要有信心,否則,走不出自己心理的束縛,很難有所成就。學(xué)習(xí)數(shù)學(xué)應(yīng)該要在宏觀上對(duì)其有一個(gè)整體的把握,總的來(lái)說(shuō),數(shù)學(xué)可以分為8大部分:函數(shù)、數(shù)列、立體幾何、解析幾何、排列組合、不等式、平面向量、二項(xiàng)式定理以及統(tǒng)計(jì)。其中,尤其以函數(shù)和幾何較為難學(xué),同時(shí)也是高考數(shù)學(xué)重點(diǎn)知識(shí)內(nèi)容,要弄清楚它們各自的特點(diǎn)以及相互之間的聯(lián)系,這些都是最基本的內(nèi)容。而要做到這一點(diǎn),首先就要對(duì)課本上的一些基本的概念、定理、公式了如指掌,用的時(shí)候才能從容不迫,信手拈來(lái)。
高考數(shù)學(xué)答題套路——解三角形問(wèn)題
(1)高考數(shù)學(xué)解題路線(xiàn)圖
?、?a 化簡(jiǎn)變形;b 用余弦定理轉(zhuǎn)化為邊的關(guān)系;c 變形證明。
?、?a 用余弦定理表示角;b 用基本不等式求范圍;c 確定角的取值范圍。
(2)構(gòu)建答題模板
?、俣l件:即確定三角形中的已知和所求,在圖形中標(biāo)注出來(lái),然后確定轉(zhuǎn)化的方向。
②定工具:即根據(jù)條件和所求,合理選擇轉(zhuǎn)化的工具,實(shí)施邊角之間的互化。
?、矍蠼Y(jié)果。
?、茉俜此迹涸趯?shí)施邊角互化的時(shí)候應(yīng)注意轉(zhuǎn)化的方向,一般有兩種思路:一是全部轉(zhuǎn)化為邊之間的關(guān)系;二是全部轉(zhuǎn)化為角之間的關(guān)系,然后進(jìn)行恒等變形。
高考數(shù)學(xué)答題套路——數(shù)列的通項(xiàng)、求和問(wèn)題
(1高考數(shù)學(xué))解題路線(xiàn)圖
?、傧惹竽骋豁?xiàng),或者找到數(shù)列的關(guān)系式。
?、谇笸?xiàng)公式。
?、矍髷?shù)列和通式。
(2)構(gòu)建答題模板
?、僬疫f推:根據(jù)已知條件確定數(shù)列相鄰兩項(xiàng)之間的關(guān)系,即找數(shù)列的遞推公式。
?、谇笸?xiàng):根據(jù)數(shù)列遞推公式轉(zhuǎn)化為等差或等比數(shù)列求通項(xiàng)公式,或利用累加法或累乘法求通項(xiàng)公式。
?、鄱ǚ椒ǎ焊鶕?jù)數(shù)列表達(dá)式的結(jié)構(gòu)特征確定求和方法(如公式法、裂項(xiàng)相消法、錯(cuò)位相減法、分組法等)。
?、軐?xiě)步驟:規(guī)范寫(xiě)出求和步驟。
⑤再反思:反思回顧,查看關(guān)鍵點(diǎn)、易錯(cuò)點(diǎn)及解題規(guī)范。
高考數(shù)學(xué)答題套路—— 利用空間向量求角問(wèn)題
(1)解題路線(xiàn)圖
①建立坐標(biāo)系,并用坐標(biāo)來(lái)表示向量。
②空間向量的坐標(biāo)運(yùn)算。
?、塾孟蛄抗ぞ咔罂臻g的角和距離。
(2)高考數(shù)學(xué)構(gòu)建答題模板
?、僬掖怪保赫页?或作出)具有公共交點(diǎn)的三條兩兩垂直的直線(xiàn)。
?、趯?xiě)坐標(biāo):建立空間直角坐標(biāo)系,寫(xiě)出特征點(diǎn)坐標(biāo)。
③求向量:求直線(xiàn)的方向向量或平面的法向量。
④求夾角:計(jì)算向量的夾角。
?、莸媒Y(jié)論:得到所求兩個(gè)平面所成的角或直線(xiàn)和平面所成的角。
高考數(shù)學(xué)答題套路——解析幾何中的探索性問(wèn)題
(1)解題路線(xiàn)圖
?、僖话阆燃僭O(shè)這種情況成立(點(diǎn)存在、直線(xiàn)存在、位置關(guān)系存在等)
?、趯⑸厦娴募僭O(shè)代入已知條件求解。
③得出結(jié)論。
(2)高考數(shù)學(xué)構(gòu)建答題模板
①先假定:假設(shè)結(jié)論成立。
?、谠偻评恚阂约僭O(shè)結(jié)論成立為條件,進(jìn)行推理求解。
?、巯陆Y(jié)論:若推出合理結(jié)果,經(jīng)驗(yàn)證成立則肯。 定假設(shè);若推出矛盾則否定假設(shè)。
④再回顧:查看關(guān)鍵點(diǎn),易錯(cuò)點(diǎn)(特殊情況、隱含條件等),審視解題規(guī)范性。