国产成人v爽在线免播放观看,日韩欧美色,久久99国产精品久久99软件,亚洲综合色网站,国产欧美日韩中文久久,色99在线,亚洲伦理一区二区

學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高三學(xué)習(xí)方法>高三數(shù)學(xué)>

高三數(shù)學(xué)常見(jiàn)知識(shí)點(diǎn)歸納

時(shí)間: 舒淇4599 分享

高三學(xué)生很快就會(huì)面臨繼續(xù)學(xué)業(yè)或事業(yè)的選擇。面對(duì)重要的人生選擇,是否考慮清楚了?這對(duì)于沒(méi)有社會(huì)經(jīng)驗(yàn)的學(xué)生來(lái)說(shuō),無(wú)疑是個(gè)困難的選擇。下面小編為大家?guī)?lái)高三數(shù)學(xué)常見(jiàn)知識(shí)點(diǎn)歸納,希望大家喜歡!

高三數(shù)學(xué)常見(jiàn)知識(shí)點(diǎn)歸納

第一部分集合

(1)含n個(gè)元素的集合的子集數(shù)為2^n,真子集數(shù)為2^n—1;非空真子集的數(shù)為2^n—2;

(2)注意:討論的時(shí)候不要遺忘了的情況。

第二部分函數(shù)與導(dǎo)數(shù)

1、映射:注意①第一個(gè)集合中的元素必須有象;②一對(duì)一,或多對(duì)一。

2、函數(shù)值域的求法:①分析法;②配方法;③判別式法;④利用函數(shù)單調(diào)性;⑤換元法;⑥利用均值不等式;⑦利用數(shù)形結(jié)合或幾何意義(斜率、距離、絕對(duì)值的意義等);⑧利用函數(shù)有界性(、、等);⑨導(dǎo)數(shù)法

3、復(fù)合函數(shù)的有關(guān)問(wèn)題

(1)復(fù)合函數(shù)定義域求法:

①若f(x)的定義域?yàn)椤瞐,b〕,則復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出

②若f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域。

(2)復(fù)合函數(shù)單調(diào)性的判定:

①首先將原函數(shù)分解為基本函數(shù):內(nèi)函數(shù)與外函數(shù);

②分別研究?jī)?nèi)、外函數(shù)在各自定義域內(nèi)的單調(diào)性;

③根據(jù)“同性則增,異性則減”來(lái)判斷原函數(shù)在其定義域內(nèi)的單調(diào)性。

注意:外函數(shù)的定義域是內(nèi)函數(shù)的值域。

4、分段函數(shù):值域(最值)、單調(diào)性、圖象等問(wèn)題,先分段解決,再下結(jié)論。

5、函數(shù)的奇偶性

⑴函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱(chēng)是函數(shù)具有奇偶性的必要條件;

⑵是奇函數(shù);

⑶是偶函數(shù);

⑷奇函數(shù)在原點(diǎn)有定義,則;

⑸在關(guān)于原點(diǎn)對(duì)稱(chēng)的單調(diào)區(qū)間內(nèi):奇函數(shù)有相同的單調(diào)性,偶函數(shù)有相反的單調(diào)性;

(6)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先等價(jià)變形,再判斷其奇偶性;

1、對(duì)于函數(shù)f(x),如果對(duì)于定義域內(nèi)任意一個(gè)x,都有f(—x)=—f(x),那么f(x)為奇函數(shù);

2、對(duì)于函數(shù)f(x),如果對(duì)于定義域內(nèi)任意一個(gè)x,都有f(—x)=f(x),那么f(x)為偶函數(shù);

3、一般地,對(duì)于函數(shù)y=f(x),定義域內(nèi)每一個(gè)自變量x,都有f(a+x)=2b—f(a—x),則y=f(x)的圖象關(guān)于點(diǎn)(a,b)成中心對(duì)稱(chēng);

4、一般地,對(duì)于函數(shù)y=f(x),定義域內(nèi)每一個(gè)自變量x都有f(a+x)=f(a—x),則它的圖象關(guān)于x=a成軸對(duì)稱(chēng)。

5、函數(shù)是奇函數(shù)或是偶函數(shù)稱(chēng)為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);

6、由函數(shù)奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,則—x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱(chēng))。

高三數(shù)學(xué)必修知識(shí)點(diǎn)

1.等差數(shù)列的定義

如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d表示.

2.等差數(shù)列的通項(xiàng)公式

若等差數(shù)列{an}的首項(xiàng)是a1,公差是d,則其通項(xiàng)公式為an=a1+(n-1)d.

3.等差中項(xiàng)

如果A=(a+b)/2,那么A叫做a與b的等差中項(xiàng).

4.等差數(shù)列的常用性質(zhì)

(1)通項(xiàng)公式的推廣:an=am+(n-m)d(n,m∈N_).

(2)若{an}為等差數(shù)列,且m+n=p+q,

則am+an=ap+aq(m,n,p,q∈N_).

(3)若{an}是等差數(shù)列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數(shù)列.

(4)數(shù)列Sm,S2m-Sm,S3m-S2m,…也是等差數(shù)列.

(5)S2n-1=(2n-1)an.

(6)若n為偶數(shù),則S偶-S奇=nd/2;

若n為奇數(shù),則S奇-S偶=a中(中間項(xiàng)).

注意:

一個(gè)推導(dǎo)

利用倒序相加法推導(dǎo)等差數(shù)列的前n項(xiàng)和公式:

Sn=a1+a2+a3+…+an,①

Sn=an+an-1+…+a1,②

①+②得:Sn=n(a1+an)/2

兩個(gè)技巧

已知三個(gè)或四個(gè)數(shù)組成等差數(shù)列的一類(lèi)問(wèn)題,要善于設(shè)元.

(1)若奇數(shù)個(gè)數(shù)成等差數(shù)列且和為定值時(shí),可設(shè)為…,a-2d,a-d,a,a+d,a+2d,….

(2)若偶數(shù)個(gè)數(shù)成等差數(shù)列且和為定值時(shí),可設(shè)為…,a-3d,a-d,a+d,a+3d,…,其余各項(xiàng)再依據(jù)等差數(shù)列的定義進(jìn)行對(duì)稱(chēng)設(shè)元.

四種方法

等差數(shù)列的判斷方法

(1)定義法:對(duì)于n≥2的任意自然數(shù),驗(yàn)證an-an-1為同一常數(shù);

(2)等差中項(xiàng)法:驗(yàn)證2an-1=an+an-2(n≥3,n∈N_)都成立;

(3)通項(xiàng)公式法:驗(yàn)證an=pn+q;

(4)前n項(xiàng)和公式法:驗(yàn)證Sn=An2+Bn.

注:后兩種方法只能用來(lái)判斷是否為等差數(shù)列,而不能用來(lái)證明等差數(shù)列.

高三數(shù)學(xué)基礎(chǔ)知識(shí)點(diǎn)

不等式這部分知識(shí),滲透在中學(xué)數(shù)學(xué)各個(gè)分支中,有著十分廣泛的應(yīng)用。因此不等式應(yīng)用問(wèn)題體現(xiàn)了一定的綜合性、靈活多樣性,對(duì)數(shù)學(xué)各部分知識(shí)融會(huì)貫通,起到了很好的促進(jìn)作用。在解決問(wèn)題時(shí),要依據(jù)題設(shè)與結(jié)論的結(jié)構(gòu)特點(diǎn)、內(nèi)在聯(lián)系、選擇適當(dāng)?shù)慕鉀Q方案,最終歸結(jié)為不等式的求解或證明。不等式的應(yīng)用范圍十分廣泛,它始終貫串在整個(gè)中學(xué)數(shù)學(xué)之中。

諸如集合問(wèn)題,方程(組)的解的討論,函數(shù)單調(diào)性的研究,函數(shù)定義域的確定,三角、數(shù)列、復(fù)數(shù)、立體幾何、解析幾何中的值、最小值問(wèn)題,無(wú)一不與不等式有著密切的聯(lián)系,許多問(wèn)題,最終都可歸結(jié)為不等式的求解或證明。

知識(shí)整合

1、解不等式的核心問(wèn)題是不等式的同解變形,不等式的性質(zhì)則是不等式變形的理論依據(jù),方程的根、函數(shù)的性質(zhì)和圖象都與不等式的解法密切相關(guān),要善于把它們有機(jī)地聯(lián)系起來(lái),互相轉(zhuǎn)化。在解不等式中,換元法和圖解法是常用的技巧之一。通過(guò)換元,可將較復(fù)雜的不等式化歸為較簡(jiǎn)單的或基本不等式,通過(guò)構(gòu)造函數(shù)、數(shù)形結(jié)合,則可將不等式的解化歸為直觀、形象的圖形關(guān)系,對(duì)含有參數(shù)的不等式,運(yùn)用圖解法可以使得分類(lèi)標(biāo)準(zhǔn)明晰。

2、整式不等式(主要是一次、二次不等式)的解法是解不等式的基礎(chǔ),利用不等式的性質(zhì)及函數(shù)的單調(diào)性,將分式不等式、絕對(duì)值不等式等化歸為整式不等式(組)是解不等式的基本思想,分類(lèi)、換元、數(shù)形結(jié)合是解不等式的常用方法。方程的根、函數(shù)的性質(zhì)和圖象都與不等式的解密切相關(guān),要善于把它們有機(jī)地聯(lián)系起來(lái),相互轉(zhuǎn)化和相互變用。

3、在不等式的求解中,換元法和圖解法是常用的技巧之一,通過(guò)換元,可將較復(fù)雜的不等式化歸為較簡(jiǎn)單的或基本不等式,通過(guò)構(gòu)造函數(shù),將不等式的解化歸為直觀、形象的圖象關(guān)系,對(duì)含有參數(shù)的不等式,運(yùn)用圖解法,可以使分類(lèi)標(biāo)準(zhǔn)更加明晰。

4、證明不等式的方法靈活多樣,但比較法、綜合法、分析法仍是證明不等式的最基本方法。要依據(jù)題設(shè)、題斷的結(jié)構(gòu)特點(diǎn)、內(nèi)在聯(lián)系,選擇適當(dāng)?shù)淖C明方法,要熟悉各種證法中的推理思維,并掌握相應(yīng)的步驟,技巧和語(yǔ)言特點(diǎn)。比較法的一般步驟是:作差(商)→變形→判斷符號(hào)(值)。

高三數(shù)學(xué)常見(jiàn)知識(shí)點(diǎn)歸納相關(guān)文章

精選高三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)

高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)與歸納

高三數(shù)學(xué)知識(shí)點(diǎn)大全有哪些

高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)總結(jié)歸納

高三數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)大全

高三數(shù)學(xué)重要知識(shí)點(diǎn)

高三數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)整合

高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

高三數(shù)學(xué)第一輪復(fù)習(xí)知識(shí)點(diǎn)

高三數(shù)學(xué)重要難點(diǎn)知識(shí)點(diǎn)總結(jié)

1579291