高三年級數(shù)學(xué)易錯知識點(diǎn)大全
機(jī)會只不過是相對于充分準(zhǔn)備而又善于創(chuàng)造機(jī)會的人而言的。沒有機(jī)會,就要創(chuàng)造機(jī)會;有了機(jī)會,就要巧妙地抓住機(jī)會,而高考就是你走上成功之路的第一個機(jī)會。接下來是小編為大家整理的高三數(shù)學(xué)易錯知識點(diǎn),希望大家喜歡!
高三年級數(shù)學(xué)易錯知識點(diǎn)大全篇一
變化前的點(diǎn)坐標(biāo)(x,y)
坐標(biāo)變化
變化后的點(diǎn)坐標(biāo)
圖形變化平移橫坐標(biāo)不變,縱坐標(biāo)加上(或減去)n(n>0)個單位長度
(x,y+n)或(x,y-n)
圖形向上(或向下)平移了n個單位長度
縱坐標(biāo)不變,橫坐標(biāo)加上(或減去)n(n>0)個單位長度
(x+n,y)或(x-n,y)
圖形向右(或向左)平移了n個單位長度伸長橫坐標(biāo)不變,縱坐標(biāo)擴(kuò)大n(n>1)倍(x,ny)圖形被縱向拉長為原來的n倍
縱坐標(biāo)不變,橫坐標(biāo)擴(kuò)大n(n>1)倍(nx,y)圖形被橫向拉長為原來的n倍壓縮橫坐標(biāo)不變,縱坐標(biāo)縮小n(n>1)倍(x,)圖形被縱向縮短為原來的
縱坐標(biāo)不變,橫坐標(biāo)縮小n(n>1)倍(,y)圖形被橫向縮短為原來的放大橫縱坐標(biāo)同時擴(kuò)大n(n>1)倍(nx,ny)圖形變?yōu)樵瓉淼膎2倍縮小橫縱坐標(biāo)同時縮小n(n>1)倍(,)圖形變?yōu)樵瓉淼?/p>
78、求與幾何圖形聯(lián)系的特殊點(diǎn)的坐標(biāo),往往是向x軸或y軸引垂線,轉(zhuǎn)化為求線段的長,再根據(jù)點(diǎn)所在的象限,醒上相應(yīng)的符號。求坐標(biāo)分兩種情況:(1)求交點(diǎn),如直線與直線的交點(diǎn);(2)求距離,再將距離換算成坐標(biāo),通常作x軸或y軸的垂線,再解直角三角形。
高三年級數(shù)學(xué)易錯知識點(diǎn)大全篇
二不等式分類:
不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。一般地,用純粹的大于號、小于號“>”“<”連接的不等式稱為嚴(yán)格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號)“≥”(大于等于符號)“≤”(小于等于符號)連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式。
通常不等式中的數(shù)是實(shí)數(shù),字母也代表實(shí)數(shù),不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z)(其中不等號也可以為<,≥,>中某一個),兩邊的解析式的公共定義域稱為不等式的定義域,不等式既可以表達(dá)一個命題,也可以表示一個問題。
高三年級數(shù)學(xué)易錯知識點(diǎn)大全篇
三一、柱、錐、臺、球的結(jié)構(gòu)特征
結(jié)構(gòu)特征
圖例
棱柱
(1)兩底面相互平行,其余各面都是平行四邊形;
(2)側(cè)棱平行且相等.
圓柱
(1)兩底面相互平行;(2)側(cè)面的母線平行于圓柱的軸;
(3)是以矩形的一邊所在直線為旋轉(zhuǎn)軸,其余三邊旋轉(zhuǎn)形成的曲面所圍成的幾何體.
棱錐
(1)底面是多邊形,各側(cè)面均是三角形;
(2)各側(cè)面有一個公共頂點(diǎn).
圓錐
(1)底面是圓;(2)是以直角三角形的一條直角邊所在的直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)形成的曲面所圍成的幾何體.
棱臺
(1)兩底面相互平行;(2)是用一個平行于棱錐底面的平面去截棱錐,底面和截面之間的部分.
圓臺
(1)兩底面相互平行;
(2)是用一個平行于圓錐底面的平面去截圓錐,底面和截面之間的部分.
球
(1)球心到球面上各點(diǎn)的距離相等;(2)是以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體.
二、簡單組合體的結(jié)構(gòu)特征
三、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)
注:
正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;
俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;
側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。
四、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點(diǎn):
①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
五、柱體、錐體、臺體的表面積與體積
(1)幾何體的表面積為幾何體各個面的面積的和。
(2)特殊幾何體表面積公式(c為底面周長,h為高,h'為斜高,l為母線)
(3)柱體、錐體、臺體的體積公式
(4)球體的表面積和體積公式:
高三年級數(shù)學(xué)易錯知識點(diǎn)大全篇
四1、基本概念:
(1)必然事件:在條件S下,一定會發(fā)生的事件,叫相對于條件S的必然事件;
(2)不可能事件:在條件S下,一定不會發(fā)生的事件,叫相對于條件S的不可能事件;
(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件S的確定事件;
(4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機(jī)事件;
(5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例
fn(A)=為事件A出現(xiàn)的概率:對于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個常數(shù)上,把這個常數(shù)記作P(A),稱為事件A的概率。
(6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值,它具有一定的穩(wěn)定性,總在某個常數(shù)附近擺動,且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動幅度越來越小。我們把這個常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個事件的概率
3.1.3概率的基本性質(zhì)
1、基本概念:
(1)事件的包含、并事件、交事件、相等事件
(2)若A∩B為不可能事件,即A∩B=ф,那么稱事件A與事件B互斥;
(3)若A∩B為不可能事件,A∪B為必然事件,那么稱事件A與事件B互為對立事件;
(4)當(dāng)事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B);若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)
2、概率的基本性質(zhì):
1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;
2)當(dāng)事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B);
3)若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);
4)互斥事件與對立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗(yàn)中不會同時發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2)事件A不發(fā)生且事件B發(fā)生;(3)事件A與事件B同時不發(fā)生,而對立事件是指事件A與事件B有且僅有一個發(fā)生,其包括兩種情形;(1)事件A發(fā)生B不發(fā)生;(2)事件B發(fā)生事件A不發(fā)生,對立事件互斥事件的特殊情形。
3.2.1—3.2.2古典概型及隨機(jī)數(shù)的產(chǎn)生
1、(1)古典概型的使用條件:試驗(yàn)結(jié)果的有限性和所有結(jié)果的等可能性。
(2)古典概型的解題步驟;
①求出總的基本事件數(shù);
②求出事件A所包含的基本事件數(shù),然后利用公式P(A)
3.3.1—3.3.2幾何概型及均勻隨機(jī)數(shù)的產(chǎn)生
1、基本概念:
(1)幾何概率模型:如果每個事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型;
(2)幾何概型的概率公式:
P(A)=
(3)幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等.
高三年級數(shù)學(xué)易錯知識點(diǎn)大全篇
五⑴公差為d的等差數(shù)列,各項(xiàng)同加一數(shù)所得數(shù)列仍是等差數(shù)列,其公差仍為d.
⑵公差為d的等差數(shù)列,各項(xiàng)同乘以常數(shù)k所得數(shù)列仍是等差數(shù)列,其公差為kd.
⑶若{an}{bn}為等差數(shù)列,則{an±bn}與{kan+bn}(k、b為非零常數(shù))也是等差數(shù)列.
⑷對任何m、n,在等差數(shù)列中有:an=am+(n-m)d(m、n∈N+),特別地,當(dāng)m=1時,便得等差數(shù)列的通項(xiàng)公式,此式較等差數(shù)列的通項(xiàng)公式更具有一般性.
⑸、一般地,當(dāng)m+n=p+q(m,n,p,q∈N+)時,am+an=ap+aq.
⑹公差為d的等差數(shù)列,從中取出等距離的項(xiàng),構(gòu)成一個新數(shù)列,此數(shù)列仍是等差數(shù)列,其公差為kd(k為取出項(xiàng)數(shù)之差).
(7)下表成等差數(shù)列且公差為m的項(xiàng)ak.ak+m.ak+2m.....(k,m∈N+)組成公差為md的等差數(shù)列。
⑻在等差數(shù)列中,從第二項(xiàng)起,每一項(xiàng)(有窮數(shù)列末項(xiàng)除外)都是它前后兩項(xiàng)的等差中項(xiàng).
⑼當(dāng)公差d>0時,等差數(shù)列中的數(shù)隨項(xiàng)數(shù)的增大而增大;當(dāng)d<0時,等差數(shù)列中的數(shù)隨項(xiàng)數(shù)的減少而減小;d=0時,等差數(shù)列中的數(shù)等于一個常數(shù).
高三年級數(shù)學(xué)易錯知識點(diǎn)大全相關(guān)文章:
1.高考數(shù)學(xué)18個易錯知識點(diǎn)總結(jié)
3.高考數(shù)學(xué)18個易錯知識點(diǎn)及各分段學(xué)生的提分秘籍和答題模板
5.高三數(shù)學(xué)78個數(shù)學(xué)易錯易混知識點(diǎn)與必考大題