高考數(shù)學(xué)必考知識點(diǎn)2022
數(shù)學(xué)是一切科學(xué)的基礎(chǔ),一不小心就容易出錯,在高考上出錯可就不好了.接下來是小編為大家整理的高考數(shù)學(xué)必考知識點(diǎn)2022,希望大家喜歡!
一、集合、簡易邏輯(14課時,8個)
1.集合;2.子集;3.補(bǔ)集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件。
二、函數(shù)(30課時,12個)
1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴(kuò)充;7.有理指數(shù)冪的運(yùn)算;8.指數(shù)函數(shù);9.對數(shù);10.對數(shù)的運(yùn)算性質(zhì);11.對數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例。
三、數(shù)列(12課時,5個)
1.數(shù)列;2.等差數(shù)列及其通項(xiàng)公式;3.等差數(shù)列前n項(xiàng)和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項(xiàng)和公式。
四、三角函數(shù)(46課時,17個)
1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4.單位圓中的三角函數(shù)線;5.同角三角函數(shù)的基本關(guān)系式;6.正弦、余弦的誘導(dǎo)公式;7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16.余弦定理;17.斜三角形解法舉例。
五、平面向量(12課時,8個)
1.向量;2.向量的加法與減法;3.實(shí)數(shù)與向量的積;4.平面向量的坐標(biāo)表示;5.線段的定比分點(diǎn);6.平面向量的數(shù)量積;7.平面兩點(diǎn)間的距離;8.平移。
六、不等式(22課時,5個)
1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。
七、直線和圓的方程(22課時,12個)
1.直線的傾斜角和斜率;2.直線方程的點(diǎn)斜式和兩點(diǎn)式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點(diǎn)到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡單線性規(guī)劃問題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標(biāo)準(zhǔn)方程和一般方程;12.圓的參數(shù)方程。
八、圓錐曲線(18課時,7個)
1.橢圓及其標(biāo)準(zhǔn)方程;2.橢圓的簡單幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線及其標(biāo)準(zhǔn)方程;5.雙曲線的簡單幾何性質(zhì);6.拋物線及其標(biāo)準(zhǔn)方程;7.拋物線的簡單幾何性質(zhì)。
九、直線、平面、簡單何體(36課時,28個)
1.平面及基本性質(zhì);2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質(zhì);5.直線和平面垂直的判定與性質(zhì);6.三垂線定理及其逆定理;7.兩個平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標(biāo)表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點(diǎn)到平面的距離;18.直線和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球。
十、排列、組合、二項(xiàng)式定理(18課時,8個)
1.分類計(jì)數(shù)原理與分步計(jì)數(shù)原理;2.排列;3.排列數(shù)公式;4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個性質(zhì);7.二項(xiàng)式定理;8.二項(xiàng)展開式的性質(zhì)。
十一、概率(12課時,5個)
1.隨機(jī)事件的概率;2.等可能事件的概率;3.互斥事件有一個發(fā)生的概率;4.相互獨(dú)立事件同時發(fā)生的概率;5.獨(dú)立重復(fù)試驗(yàn)。
選修Ⅱ(24個)
十二、概率與統(tǒng)計(jì)(14課時,6個)
1.離散型隨機(jī)變量的分布列;2.離散型隨機(jī)變量的期望值和方差;3.抽樣方法;4.總體分布的估計(jì);5.正態(tài)分布;6.線性回歸。
十三、極限(12課時,6個)
1.數(shù)學(xué)歸納法;2.數(shù)學(xué)歸納法應(yīng)用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運(yùn)算;6.函數(shù)的連續(xù)性。
十四、導(dǎo)數(shù)(18課時,8個)
1.導(dǎo)數(shù)的概念;2.導(dǎo)數(shù)的幾何意義;3.幾種常見函數(shù)的導(dǎo)數(shù);4.兩個函數(shù)的和、差、積、商的導(dǎo)數(shù);5.復(fù)合函數(shù)的導(dǎo)數(shù);6.基本導(dǎo)數(shù)公式;7.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值;8.函數(shù)的值和最小值。
十五、復(fù)數(shù)(4課時,4個)
1.復(fù)數(shù)的概念;2.復(fù)數(shù)的加法和減法;3.復(fù)數(shù)的乘法和除法;4.復(fù)數(shù)的一元二次方程和二項(xiàng)方程的解法。
〈〈〈返回目錄
1、圓的定義:
平面內(nèi)到一定點(diǎn)的距離等于定長的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長為圓的半徑。
2、圓的方程
(1)標(biāo)準(zhǔn)方程,圓心,半徑為r;
(2)一般方程
當(dāng)時,方程表示圓,此時圓心為,半徑為
當(dāng)時,表示一個點(diǎn);當(dāng)時,方程不表示任何圖形。
(3)求圓方程的方法:
一般都采用待定系數(shù)法:先設(shè)后求。確定一個圓需要三個獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置。
3、直線與圓的位置關(guān)系:
直線與圓的位置關(guān)系有相離,相切,相交三種情況:
(1)設(shè)直線,圓,圓心到l的距離為,則有
(2)過圓外一點(diǎn)的切線:
①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程
(3)過圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2
4、圓與圓的位置關(guān)系:
通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
設(shè)圓,
兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
當(dāng)時兩圓外離,此時有公切線四條;
當(dāng)時兩圓外切,連心線過切點(diǎn),有外公切線兩條,內(nèi)公切線一條;
當(dāng)時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當(dāng)時,兩圓內(nèi)切,連心線經(jīng)過切點(diǎn),只有一條公切線;
當(dāng)時,兩圓內(nèi)含;當(dāng)時,為同心圓。
注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線
圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)
〈〈〈返回目錄
一、隨機(jī)事件
主要掌握好(三四五)
(1)事件的三種運(yùn)算:并(和)、交(積)、差;注意差A(yù)-B可以表示成A與B的逆的積。
(2)四種運(yùn)算律:交換律、結(jié)合律、分配律、德莫根律。
(3)事件的五種關(guān)系:包含、相等、互斥(互不相容)、對立、相互獨(dú)立。
二、概率定義
(1)統(tǒng)計(jì)定義:頻率穩(wěn)定在一個數(shù)附近,這個數(shù)稱為事件的概率;(2)古典定義:要求樣本空間只有有限個基本事件,每個基本事件出現(xiàn)的可能性相等,則事件A所含基本事件個數(shù)與樣本空間所含基本事件個數(shù)的比稱為事件的古典概率;
(3)幾何概率:樣本空間中的元素有無窮多個,每個元素出現(xiàn)的可能性相等,則可以將樣本空間看成一個幾何圖形,事件A看成這個圖形的子集,它的概率通過子集圖形的大小與樣本空間圖形的大小的比來計(jì)算;
(4)公理化定義:滿足三條公理的任何從樣本空間的子集集合到[0,1]的映射。
三、概率性質(zhì)與公式
(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);
(2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含于A,則P(A-B)=P(A)-P(B);
(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨(dú)立,則P(AB)=P(A)P(B);
(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,
貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;
如果一個事件B可以在多種情形(原因)A1,A2,....,An下發(fā)生,則用全概率公式求B發(fā)生的概率;如果事件B已經(jīng)發(fā)生,要求它是由Aj引起的概率,則用貝葉斯公式.
(5)二項(xiàng)概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當(dāng)一個問題可以看成n重貝努力試驗(yàn)(三個條件:n次重復(fù),每次只有A與A的逆可能發(fā)生,各次試驗(yàn)結(jié)果相互獨(dú)立)時,要考慮二項(xiàng)概率公式.
〈〈〈返回目錄
分層抽樣
先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類型或?qū)哟?,然后再在各個類型或?qū)哟沃胁捎煤唵坞S機(jī)抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本。
兩種方法
1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。
2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。
3.分層抽樣是把異質(zhì)性較強(qiáng)的總體分成一個個同質(zhì)性較強(qiáng)的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。
分層標(biāo)準(zhǔn)
(1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標(biāo)準(zhǔn)。
(2)以保證各層內(nèi)部同質(zhì)性強(qiáng)、各層之間異質(zhì)性強(qiáng)、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。
(3)以那些有明顯分層區(qū)分的變量作為分層變量。
分層的比例問題
(1)按比例分層抽樣:根據(jù)各種類型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來抽取子樣本的方法。
(2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會非常少,此時采用該方法,主要是便于對不同層次的子總體進(jìn)行專門研究或進(jìn)行相互比較。如果要用樣本資料推斷總體時,則需要先對各層的數(shù)據(jù)資料進(jìn)行加權(quán)處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢復(fù)到總體中各層實(shí)際的比例結(jié)構(gòu)。
〈〈〈返回目錄
高考數(shù)學(xué)必考知識點(diǎn)2022相關(guān)文章:
★ 高三數(shù)學(xué)二輪復(fù)習(xí)策略2022
★ 高三上冊數(shù)學(xué)教學(xué)總結(jié)2022最新
★ 2022高中數(shù)學(xué)教學(xué)工作計(jì)劃精選10篇