国产成人v爽在线免播放观看,日韩欧美色,久久99国产精品久久99软件,亚洲综合色网站,国产欧美日韩中文久久,色99在线,亚洲伦理一区二区

學習啦>學習方法>高中學習方法>高三學習方法>高三數(shù)學>

高中數(shù)學考點整理歸納

時間: 燕純0 分享

  數(shù)學是最重要的一科了,高考復習資料很多,現(xiàn)在學生經(jīng)常陷入書山題海不能自拔!高考題千變?nèi)f化,萬變不離其宗。宗就是“高考考點”。接下來是小編為大家整理的高中數(shù)學考點整理歸納,希望大家喜歡!

  高中數(shù)學考點整理歸納一

  圓柱的幾何特征

 ?、俚酌媸侨鹊膱A;

 ?、谀妇€與軸平行;

 ?、圯S與底面圓的半徑垂直;

 ?、軅?cè)面展開圖是一個矩形。

  圓柱:

  以矩形的一邊所在直線為旋轉(zhuǎn)軸,其余三邊旋轉(zhuǎn)360°形成的曲面所圍成的幾何體叫作圓柱(circular cylinder),即以AG矩形的一條邊為軸,旋轉(zhuǎn)360°所得的幾何體就是圓柱。

  高中數(shù)學考點整理歸納二

  1. 對于集合,一定要抓住集合的代表元素,及元素的“確定性、互異性、無序性”。

  中元素各表示什么?

  注重借助于數(shù)軸和文氏圖解集合問題。

  空集是一切集合的子集,是一切非空集合的真子集。

  3. 注意下列性質(zhì):

  (3)德摩根定律:

  4. 你會用補集思想解決問題嗎?(排除法、間接法)

  的取值范圍。

  6. 命題的四種形式及其相互關(guān)系是什么?

  (互為逆否關(guān)系的命題是等價命題。)

  原命題與逆否命題同真、同假;逆命題與否命題同真同假。

  7. 對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應(yīng)元素的唯一性,哪幾種對應(yīng)能構(gòu)成映射?

  (一對一,多對一,允許B中有元素無原象。)

  8. 函數(shù)的三要素是什么?如何比較兩個函數(shù)是否相同?

  (定義域、對應(yīng)法則、值域)

  9. 求函數(shù)的定義域有哪些常見類型?

  10. 如何求復合函數(shù)的定義域?

  義域是_____________。

  11. 求一個函數(shù)的解析式或一個函數(shù)的反函數(shù)時,注明函數(shù)的定義域了嗎?

  12. 反函數(shù)存在的條件是什么?

  (一一對應(yīng)函數(shù))

  求反函數(shù)的步驟掌握了嗎?

  (①反解x;②互換x、y;③注明定義域)

  13. 反函數(shù)的性質(zhì)有哪些?

 ?、倩榉春瘮?shù)的圖象關(guān)于直線y=x對稱;

  ②保存了原來函數(shù)的單調(diào)性、奇函數(shù)性;

  14. 如何用定義證明函數(shù)的單調(diào)性?

  (取值、作差、判正負)

  如何判斷復合函數(shù)的單調(diào)性?

  ∴……)

  15. 如何利用導數(shù)判斷函數(shù)的單調(diào)性?

  值是( )

  A. 0 B. 1 C. 2 D. 3

  ∴a的最大值為3)

  16. 函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?

  (f(x)定義域關(guān)于原點對稱)

  注意如下結(jié)論:

  (1)在公共定義域內(nèi):兩個奇函數(shù)的乘積是偶函數(shù);兩個偶函數(shù)的乘積是偶函數(shù);一個偶函數(shù)與奇函數(shù)的乘積是奇函數(shù)。

  17. 你熟悉周期函數(shù)的定義嗎?

  函數(shù),T是一個周期。)

  如:

  18. 你掌握常用的圖象變換了嗎?

  注意如下“翻折”變換:

  19. 你熟練掌握常用函數(shù)的圖象和性質(zhì)了嗎?

  的雙曲線。

  應(yīng)用:①“三個二次”(二次函數(shù)、二次方程、二次不等式)的關(guān)系——二次方程

 ?、谇箝]區(qū)間[m,n]上的最值。

 ?、矍髤^(qū)間定(動),對稱軸動(定)的最值問題。

 ?、芤辉畏匠谈姆植紗栴}。

  由圖象記性質(zhì)! (注意底數(shù)的限定!)

  利用它的單調(diào)性求最值與利用均值不等式求最值的區(qū)別是什么?

  20. 你在基本運算上常出現(xiàn)錯誤嗎?

  21. 如何解抽象函數(shù)問題?

  (賦值法、結(jié)構(gòu)變換法)

  22. 掌握求函數(shù)值域的常用方法了嗎?

  (二次函數(shù)法(配方法),反函數(shù)法,換元法,均值定理法,判別式法,利用函數(shù)單調(diào)性法,導數(shù)法等。)

  如求下列函數(shù)的最值:

  23. 你記得弧度的定義嗎?能寫出圓心角為α,半徑為R的弧長公式和扇形面積公式嗎?

  24. 熟記三角函數(shù)的定義,單位圓中三角函數(shù)線的定義

  25. 你能迅速畫出正弦、余弦、正切函數(shù)的圖象嗎?并由圖象寫出單調(diào)區(qū)間、對稱點、對稱軸嗎?

  (x,y)作圖象。

  27. 在三角函數(shù)中求一個角時要注意兩個方面——先求出某一個三角函數(shù)值,再判定角的范圍。

  28. 在解含有正、余弦函數(shù)的問題時,你注意(到)運用函數(shù)的有界性了嗎?

  29. 熟練掌握三角函數(shù)圖象變換了嗎?

  (平移變換、伸縮變換)

  平移公式:

  圖象?

  30. 熟練掌握同角三角函數(shù)關(guān)系和誘導公式了嗎?

  “奇”、“偶”指k取奇、偶數(shù)。

  A. 正值或負值 B. 負值 C. 非負值 D. 正值

  31. 熟練掌握兩角和、差、倍、降冪公式及其逆向應(yīng)用了嗎?

  理解公式之間的聯(lián)系:

  應(yīng)用以上公式對三角函數(shù)式化簡。(化簡要求:項數(shù)最少、函數(shù)種類最少,分母中不含三角函數(shù),能求值,盡可能求值。)

  具體方法:

  (2)名的變換:化弦或化切

  (3)次數(shù)的變換:升、降冪公式

  (4)形的變換:統(tǒng)一函數(shù)形式,注意運用代數(shù)運算。

  32. 正、余弦定理的各種表達形式你還記得嗎?如何實現(xiàn)邊、角轉(zhuǎn)化,而解斜三角形?

  (應(yīng)用:已知兩邊一夾角求第三邊;已知三邊求角。)

  33. 用反三角函數(shù)表示角時要注意角的范圍。

  34. 不等式的性質(zhì)有哪些?

  答案:C

  35. 利用均值不等式:

  值?(一正、二定、三相等)

  注意如下結(jié)論:

  36. 不等式證明的基本方法都掌握了嗎?

  (比較法、分析法、綜合法、數(shù)學歸納法等)

  并注意簡單放縮法的應(yīng)用。

  (移項通分,分子分母因式分解,x的系數(shù)變?yōu)?,穿軸法解得結(jié)果。)

  38. 用“穿軸法”解高次不等式——“奇穿,偶切”,從最大根的右上方開始

  39. 解含有參數(shù)的不等式要注意對字母參數(shù)的討論

  40. 對含有兩個絕對值的不等式如何去解?

  (找零點,分段討論,去掉絕對值符號,最后取各段的并集。)

  證明:

  (按不等號方向放縮)

  42. 不等式恒成立問題,常用的處理方式是什么?(可轉(zhuǎn)化為最值問題,或“△”問題)

  43. 等差數(shù)列的定義與性質(zhì)

  0的二次函數(shù))

  項,即:

  44. 等比數(shù)列的定義與性質(zhì)

  46. 你熟悉求數(shù)列通項公式的常用方法嗎?

  例如:(1)求差(商)法

  解:

  [練習]

  (2)疊乘法

  解:

  (3)等差型遞推公式

  [練習]

  (4)等比型遞推公式

  [練習]

  (5)倒數(shù)法

  47. 你熟悉求數(shù)列前n項和的常用方法嗎?

  例如:(1)裂項法:把數(shù)列各項拆成兩項或多項之和,使之出現(xiàn)成對互為相反數(shù)的項。

  解:

  [練習]

  (2)錯位相減法:

  (3)倒序相加法:把數(shù)列的各項順序倒寫,再與原來順序的數(shù)列相加。

  [練習]

  48. 你知道儲蓄、貸款問題嗎?

  △零存整取儲蓄(單利)本利和計算模型:

  若每期存入本金p元,每期利率為r,n期后,本利和為:

  △若按復利,如貸款問題——按揭貸款的每期還款計算模型(按揭貸款——分期等額歸還本息的借款種類)

  若貸款(向銀行借款)p元,采用分期等額還款方式,從借款日算起,一期(如一年)后為第一次還款日,如此下去,第n次還清。如果每期利率為r(按復利),那么每期應(yīng)還x元,滿足

  p——貸款數(shù),r——利率,n——還款期數(shù)

  49. 解排列、組合問題的依據(jù)是:分類相加,分步相乘,有序排列,無序組合。

  (2)排列:從n個不同元素中,任取m(m≤n)個元素,按照一定的順序排成一

  (3)組合:從n個不同元素中任取m(m≤n)個元素并組成一組,叫做從n個不

  50. 解排列與組合問題的規(guī)律是:

  相鄰問題捆綁法;相間隔問題插空法;定位問題優(yōu)先法;多元問題分類法;至多至少問題間接法;相同元素分組可采用隔板法,數(shù)量不大時可以逐一排出結(jié)果。

  如:學號為1,2,3,4的四名學生的考試成績

  則這四位同學考試成績的所有可能情況是( )

  A. 24 B. 15 C. 12 D. 10

  解析:可分成兩類:

  (2)中間兩個分數(shù)相等

  相同兩數(shù)分別取90,91,92,對應(yīng)的排列可以數(shù)出來,分別有3,4,3種,∴有10種。

  ∴共有5+10=15(種)情況

  51. 二項式定理

  性質(zhì):

  (3)最值:n為偶數(shù)時,n+1為奇數(shù),中間一項的二項式系數(shù)最大且為第

  表示)

  52. 你對隨機事件之間的關(guān)系熟悉嗎?

  的和(并)。

  (5)互斥事件(互不相容事件):“A與B不能同時發(fā)生”叫做A、B互斥。

  (6)對立事件(互逆事件):

  (7)獨立事件:A發(fā)生與否對B發(fā)生的概率沒有影響,這樣的兩個事件叫做相互獨立事件。

  53. 對某一事件概率的求法:

  分清所求的是:(1)等可能事件的概率(常采用排列組合的方法,即

  (5)如果在一次試驗中A發(fā)生的概率是p,那么在n次獨立重復試驗中A恰好發(fā)生

  如:設(shè)10件產(chǎn)品中有4件次品,6件正品,求下列事件的概率。

  (1)從中任取2件都是次品;

  (2)從中任取5件恰有2件次品;

  (3)從中有放回地任取3件至少有2件次品;

  解析:有放回地抽取3次(每次抽1件),∴n=103

  而至少有2件次品為“恰有2次品”和“三件都是次品”

  (4)從中依次取5件恰有2件次品。

  解析:∵一件一件抽取(有順序)

  分清(1)、(2)是組合問題,(3)是可重復排列問題,(4)是無重復排列問題。

  54. 抽樣方法主要有:簡單隨機抽樣(抽簽法、隨機數(shù)表法)常常用于總體個數(shù)較少時,它的特征是從總體中逐個抽取;系統(tǒng)抽樣,常用于總體個數(shù)較多時,它的主要特征是均衡成若干部分,每部分只取一個;分層抽樣,主要特征是分層按比例抽樣,主要用于總體中有明顯差異,它們的共同特征是每個個體被抽到的概率相等,體現(xiàn)了抽樣的客觀性和平等性。

  55. 對總體分布的估計——用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計總體的期望和方差。

  要熟悉樣本頻率直方圖的作法:

  (2)決定組距和組數(shù);

  (3)決定分點;

  (4)列頻率分布表;

  (5)畫頻率直方圖。

  如:從10名女生與5名男生中選6名學生參加比賽,如果按性別分層隨機抽樣,則組成此參賽隊的概率為____________。

  56. 你對向量的有關(guān)概念清楚嗎?

  (1)向量——既有大小又有方向的量。

  在此規(guī)定下向量可以在平面(或空間)平行移動而不改變。

  (6)并線向量(平行向量)——方向相同或相反的向量。

  規(guī)定零向量與任意向量平行。

  (7)向量的加、減法如圖:

  (8)平面向量基本定理(向量的分解定理)

  的一組基底。

  (9)向量的坐標表示

  表示。

  57. 平面向量的數(shù)量積

  數(shù)量積的幾何意義:

  (2)數(shù)量積的運算法則

  [練習]

  答案:

  答案:2

  答案:

  58. 線段的定比分點

  ※. 你能分清三角形的重心、垂心、外心、內(nèi)心及其性質(zhì)嗎?

  59. 立體幾何中平行、垂直關(guān)系證明的思路清楚嗎?

  平行垂直的證明主要利用線面關(guān)系的轉(zhuǎn)化:

  線面平行的判定:

  線面平行的性質(zhì):

  三垂線定理(及逆定理):

  線面垂直:

  面面垂直:

  60. 三類角的定義及求法

  (1)異面直線所成的角θ,0°<θ≤90°

  (2)直線與平面所成的角θ,0°≤θ≤90°

  (三垂線定理法:A∈α作或證AB⊥β于B,作BO⊥棱于O,連AO,則AO⊥棱l,∴∠AOB為所求。)

  三類角的求法:

  ①找出或作出有關(guān)的角。

  ②證明其符合定義,并指出所求作的角。

  ③計算大小(解直角三角形,或用余弦定理)。

  [練習]

  (1)如圖,OA為α的斜線OB為其在α內(nèi)射影,OC為α內(nèi)過O點任一直線。

  (2)如圖,正四棱柱ABCD—A1B1C1D1中對角線BD1=8,BD1與側(cè)面B1BCC1所成的為30°。

  ①求BD1和底面ABCD所成的角;

 ?、谇螽惷嬷本€BD1和AD所成的角;

 ?、矍蠖娼荂1—BD1—B1的大小。

  (3)如圖ABCD為菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB與面PCD所成的銳二面角的大小。

  (∵AB∥DC,P為面PAB與面PCD的公共點,作PF∥AB,則PF為面PCD與面PAB的交線……)

  61. 空間有幾種距離?如何求距離?

  點與點,點與線,點與面,線與線,線與面,面與面間距離。

  將空間距離轉(zhuǎn)化為兩點的距離,構(gòu)造三角形,解三角形求線段的長(如:三垂線定理法,或者用等積轉(zhuǎn)化法)。

  如:正方形ABCD—A1B1C1D1中,棱長為a,則:

  (1)點C到面AB1C1的距離為___________;

  (2)點B到面ACB1的距離為____________;

  (3)直線A1D1到面AB1C1的距離為____________;

  (4)面AB1C與面A1DC1的距離為____________;

  (5)點B到直線A1C1的距離為_____________。

  62. 你是否準確理解正棱柱、正棱錐的定義并掌握它們的性質(zhì)?

  正棱柱——底面為正多邊形的直棱柱

  正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。

  正棱錐的計算集中在四個直角三角形中:

  它們各包含哪些元素?

  63. 球有哪些性質(zhì)?

  (2)球面上兩點的距離是經(jīng)過這兩點的大圓的劣弧長。為此,要找球心角!

  (3)如圖,θ為緯度角,它是線面成角;α為經(jīng)度角,它是面面成角。

  (5)球內(nèi)接長方體的對角線是球的直徑。正四面體的外接球半徑R與內(nèi)切球半徑r之比為R:r=3:1。

  積為( )

  答案:A

  64. 熟記下列公式了嗎?

  (2)直線方程:

  65. 如何判斷兩直線平行、垂直?

  66. 怎樣判斷直線l與圓C的位置關(guān)系?

  圓心到直線的距離與圓的半徑比較。

  直線與圓相交時,注意利用圓的“垂徑定理”。

  67. 怎樣判斷直線與圓錐曲線的位置?

  68. 分清圓錐曲線的定義

  70. 在圓錐曲線與直線聯(lián)立求解時,消元后得到的方程,要注意其二次項系數(shù)是否為零?△≥0的限制。(求交點,弦長,中點,斜率,對稱存在性問題都在△≥0下進行。)

  71. 會用定義求圓錐曲線的焦半徑嗎?

  如:

  通徑是拋物線的所有焦點弦中最短者;以焦點弦為直徑的圓與準線相切。

  72. 有關(guān)中點弦問題可考慮用“代點法”。

  答案:

  73. 如何求解“對稱”問題?

  (1)證明曲線C:F(x,y)=0關(guān)于點M(a,b)成中心對稱,設(shè)A(x,y)為曲線C上任意一點,設(shè)A'(x',y')為A關(guān)于點M的對稱點。

  75. 求軌跡方程的常用方法有哪些?注意討論范圍。

  (直接法、定義法、轉(zhuǎn)移法、參數(shù)法)

  76. 對線性規(guī)劃問題:作出可行域,作出以目標函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標函數(shù)的最值。

  2高中數(shù)學公式口訣

  《集合與函數(shù)》

  內(nèi)容子交并補集,還有冪指對函數(shù)。性質(zhì)奇偶與增減,觀察圖象最明顯。

  復合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,若要詳細證明它,還須將那定義抓。

  指數(shù)與對數(shù)函數(shù),兩者互為反函數(shù)。底數(shù)非1的正數(shù),1兩邊增減變故。

  函數(shù)定義域好求。分母不能等于0,偶次方根須非負,零和負數(shù)無對數(shù)

  正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實數(shù)集,多種情況求交集。

  兩個互為反函數(shù),單調(diào)性質(zhì)都相同;圖象互為軸對稱,Y=X是對稱軸

  求解非常有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來函數(shù)的值域。

  冪函數(shù)性質(zhì)易記,指數(shù)化既約分數(shù);函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),

  奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內(nèi),函數(shù)增減看正負。

  《三角函數(shù)》

  三角函數(shù)是函數(shù),象限符號坐標注。函數(shù)圖象單位圓,周期奇偶增減現(xiàn)。

  同角關(guān)系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割

  中心記上數(shù)字1,連結(jié)頂點三角形;向下三角平方和,倒數(shù)關(guān)系是對角,

  頂點任意一函數(shù),等于后面兩根除。誘導公式就是好,負化正后大化小,

  變成稅角好查表,化簡證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,

  將其后者視銳角,符號原來函數(shù)判。兩角和的余弦值,化為單角好求值,

  余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。

  計算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡易變。

  逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。

  萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用

  1加余弦想余弦,1 減余弦想正弦,冪升一次角減半,升冪降次它為范

  三角函數(shù)反函數(shù),實質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍

  利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集

  《不等式》

  解不等式的途徑,利用函數(shù)的性質(zhì)。對指無理不等式,化為有理不等式。

  高次向著低次代,步步轉(zhuǎn)化要等價。數(shù)形之間互轉(zhuǎn)化,幫助解答作用大。

  證不等式的方法,實數(shù)性質(zhì)威力大。求差與0比大小,作商和1爭高下。

  直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。

  還有重要不等式,以及數(shù)學歸納法。圖形函數(shù)來幫助,畫圖建模構(gòu)造法。

  《數(shù)列》

  等差等比兩數(shù)列,通項公式N項和。兩個有限求極限,四則運算順序換。

  數(shù)列問題多變幻,方程化歸整體算。數(shù)列求和比較難,錯位相消巧轉(zhuǎn)換,

  取長補短高斯法,裂項求和公式算。歸納思想非常好,編個程序好思考:

  一算二看三聯(lián)想,猜測證明不可少。還有數(shù)學歸納法,證明步驟程序化:

  首先驗證再假定,從 K向著K加1,推論過程須詳盡,歸納原理來肯定。

  《復數(shù)》

  虛數(shù)單位i一出,數(shù)集擴大到復數(shù)。一個復數(shù)一對數(shù),橫縱坐標實虛部。

  對應(yīng)復平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。

  箭桿的長即是模,常將數(shù)形來結(jié)合。代數(shù)幾何三角式,相互轉(zhuǎn)化試一試。

  代數(shù)運算的實質(zhì),有i多項式運算。i的正整數(shù)次慕,四個數(shù)值周期現(xiàn)。

  一些重要的結(jié)論,熟記巧用得結(jié)果。虛實互化本領(lǐng)大,復數(shù)相等來轉(zhuǎn)化。

  利用方程思想解,注意整體代換術(shù)。幾何運算圖上看,加法平行四邊形,

  減法三角法則判;乘法除法的運算,逆向順向做旋轉(zhuǎn),伸縮全年模長短。

  三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。

  輻角運算很奇特,和差是由積商得。四條性質(zhì)離不得,相等和模與共軛,

  兩個不會為實數(shù),比較大小要不得。復數(shù)實數(shù)很密切,須注意本質(zhì)區(qū)別。

  《排列、組合、二項式定理》

  加法乘法兩原理,貫穿始終的法則。與序無關(guān)是組合,要求有序是排列。

  兩個公式兩性質(zhì),兩種思想和方法。歸納出排列組合,應(yīng)用問題須轉(zhuǎn)化。

  排列組合在一起,先選后排是常理。特殊元素和位置,首先注意多考慮。

  不重不漏多思考,捆綁插空是技巧。排列組合恒等式,定義證明建模試。

  關(guān)于二項式定理,中國楊輝三角形。兩條性質(zhì)兩公式,函數(shù)賦值變換式。

  《立體幾何》

  點線面三位一體,柱錐臺球為代表。距離都從點出發(fā),角度皆為線線成。

  高中《立體幾何》

  高中《立體幾何》

  垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環(huán)現(xiàn)。

  方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。

  立體幾何輔助線,常用垂線和平面。射影概念很重要,對于解題最關(guān)鍵。

  異面直線二面角,體積射影公式活。公理性質(zhì)三垂線,解決問題一大片。

  《平面解析幾何》

  有向線段直線圓,橢圓雙曲拋物線,參數(shù)方程極坐標,數(shù)形結(jié)合稱典范。

  笛卡爾的觀點對,點和有序?qū)崝?shù)對,兩者—一來對應(yīng),開創(chuàng)幾何新途徑。

  兩種思想相輝映,化歸思想打前陣;都說待定系數(shù)法,實為方程組思想。

  三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關(guān)系判。

  四件工具是法寶,坐標思想?yún)?shù)好;平面幾何不能丟,旋轉(zhuǎn)變換復數(shù)求。

  解析幾何是幾何,得意忘形學不活。圖形直觀數(shù)入微,數(shù)學本是數(shù)形學。

  高中數(shù)學考點整理歸納三

  兩個平面的位置關(guān)系:

  (1)兩個平面互相平行的定義:空間兩平面沒有公共點

  (2)兩個平面的位置關(guān)系:

  兩個平面平行——沒有公共點;兩個平面相交——有一條公共直線。

  a、平行

  兩個平面平行的判定定理:如果一個平面內(nèi)有兩條相交直線都平行于另一個平面,那么這兩個平面平行。

  兩個平面平行的性質(zhì)定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。

  b、相交

  二面角

  (1)半平面:平面內(nèi)的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。

  (2)二面角:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

  (3)二面角的棱:這一條直線叫做二面角的棱。

  (4)二面角的面:這兩個半平面叫做二面角的面。

  (5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

  (6)直二面角:平面角是直角的二面角叫做直二面角。

  兩平面垂直

  兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥

  兩平面垂直的判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直

  兩個平面垂直的性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于交線的直線垂直于另一個平面。

  二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補關(guān)系)

  棱錐

  棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐。

  棱錐的性質(zhì):

  (1)側(cè)棱交于一點。側(cè)面都是三角形

  (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方

  正棱錐

  正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。

  正棱錐的性質(zhì):

  (1)各側(cè)棱交于一點且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

  (3)多個特殊的直角三角形

  a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

  b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

  集合

  集合具有某種特定性質(zhì)的事物的總體。這里的“事物”可以是人,物品,也可以是數(shù)學元素。例如:1、分散的人或事物聚集到一起;使聚集:緊急~。2、數(shù)學名詞。一組具有某種共同性質(zhì)的數(shù)學元素:有理數(shù)的~。3、口號等等。集合在數(shù)學概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學的基本概念,專門研究集合的理論叫做集合論。康托(Cantor,G.F.P.,1845年—1918年,德國數(shù)學家先驅(qū),是集合論的創(chuàng)始者,目前集合論的基本思想已經(jīng)滲透到現(xiàn)代數(shù)學的所有領(lǐng)域。

  集合,在數(shù)學上是一個基礎(chǔ)概念。什么叫基礎(chǔ)概念?基礎(chǔ)概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下“定義”。

  集合是把人們的直觀的或思維中的某些確定的能夠區(qū)分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。

  集合與集合之間的關(guān)系

  某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ??占侨魏渭系淖蛹?,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。(說明一下:如果集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作A B。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫作A屬于B。中學教材課本里將符號下加了一個不等于符號,不要混淆,考試時還是要以課本為準。所有男人的集合是所有人的集合的真子集。)

  2高一函數(shù)知識點歸納

  (一)、映射、函數(shù)、反函數(shù)

  1、對應(yīng)、映射、函數(shù)三個概念既有共性又有區(qū)別,映射是一種特殊的對應(yīng),而函數(shù)又是一種特殊的映射.

  2、對于函數(shù)的概念,應(yīng)注意如下幾點:

  (1)掌握構(gòu)成函數(shù)的三要素,會判斷兩個函數(shù)是否為同一函數(shù).

  (2)掌握三種表示法——列表法、解析法、圖象法,能根實際問題尋求變量間的函數(shù)關(guān)系式,特別是會求分段函數(shù)的解析式.

  (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復合函數(shù),其中g(shù)(x)為內(nèi)函數(shù),f(u)為外函數(shù).

  3、求函數(shù)y=f(x)的反函數(shù)的一般步驟:

  (1)確定原函數(shù)的值域,也就是反函數(shù)的定義域;

  (2)由y=f(x)的解析式求出x=f-1(y);

  (3)將x,y對換,得反函數(shù)的習慣表達式y(tǒng)=f-1(x),并注明定義域.

  注意①:對于分段函數(shù)的反函數(shù),先分別求出在各段上的反函數(shù),然后再合并到一起.

 ?、谑煜さ膽?yīng)用,求f-1(x0)的值,合理利用這個結(jié)論,可以避免求反函數(shù)的過程,從而簡化運算.

  (二)、函數(shù)的解析式與定義域

  1、函數(shù)及其定義域是不可分割的整體,沒有定義域的函數(shù)是不存在的,因此,要正確地寫出函數(shù)的解析式,必須是在求出變量間的對應(yīng)法則的同時,求出函數(shù)的定義域.求函數(shù)的定義域一般有三種類型:

  (1)有時一個函數(shù)來自于一個實際問題,這時自變量x有實際意義,求定義域要結(jié)合實際意義考慮;

  (2)已知一個函數(shù)的解析式求其定義域,只要使解析式有意義即可.如:

 ?、俜质降姆帜覆坏脼榱?

 ?、谂即畏礁谋婚_方數(shù)不小于零;

 ?、蹖?shù)函數(shù)的真數(shù)必須大于零;

  ④指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)必須大于零且不等于1;

 ?、萑呛瘮?shù)中的正切函數(shù)y=tanx(x∈R,且k∈Z),余切函數(shù)y=cotx(x∈R,x≠kπ,k∈Z)等.

  應(yīng)注意,一個函數(shù)的解析式由幾部分組成時,定義域為各部分有意義的自變量取值的公共部分(即交集).

  (3)已知一個函數(shù)的定義域,求另一個函數(shù)的定義域,主要考慮定義域的深刻含義即可.

  已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時f(x)的定義域,即g(x)的值域. 2、求函數(shù)的解析式一般有四種情況

  (1)根據(jù)某實際問題需建立一種函數(shù)關(guān)系時,必須引入合適的變量,根據(jù)數(shù)學的有關(guān)知識尋求函數(shù)的解析式.

  (2)有時題設(shè)給出函數(shù)特征,求函數(shù)的解析式,可采用待定系數(shù)法.比如函數(shù)是一次函數(shù),可設(shè)f(x)=ax+b(a≠0),其中a,b為待定系數(shù),根據(jù)題設(shè)條件,列出方程組,求出a,b即可.

  (3)若題設(shè)給出復合函數(shù)f[g(x)]的表達式時,可用換元法求函數(shù)f(x)的表達式,這時必須求出g(x)的值域,這相當于求函數(shù)的定義域.

  (4)若已知f(x)滿足某個等式,這個等式除f(x)是未知量外,還出現(xiàn)其他未知量(如f(-x),等),必須根據(jù)已知等式,再構(gòu)造其他等式組成方程組,利用解方程組法求出f(x)的表達式.

  (三)、函數(shù)的值域與最值

  1、函數(shù)的值域取決于定義域和對應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下:

  (1)直接法:亦稱觀察法,對于結(jié)構(gòu)較為簡單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀察得出函數(shù)的值域.

  (2)換元法:運用代數(shù)式或三角換元將所給的復雜函數(shù)轉(zhuǎn)化成另一種簡單函數(shù)再求值域,若函數(shù)解析式中含有根式,當根式里一次式時用代數(shù)換元,當根式里是二次式時,用三角換元.

  (3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f-1(x)的定義域和值域間的關(guān)系,通過求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得.

  (4)配方法:對于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問題可考慮用配方法.

  (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過應(yīng)注意條件“一正二定三相等”有時需用到平方等技巧.

  (6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式.

  (7)利用函數(shù)的單調(diào)性求值域:當能確定函數(shù)在其定義域上(或某個定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域.

  (8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域.

  2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系

  求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實上,如果在函數(shù)的值域中存在一個最小(大)數(shù),這個數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實質(zhì)是相同的,只是提問的角度不同,因而答題的方式就有所相異.

  如函數(shù)的值域是(0,16],最大值是16,無最小值.再如函數(shù)的值域是(-∞,-2]∪[2,+∞),但此函數(shù)無最大值和最小值,只有在改變函數(shù)定義域后,如x>0時,函數(shù)的最小值為2.可見定義域?qū)瘮?shù)的值域或最值的影響.

  3、函數(shù)的最值在實際問題中的應(yīng)用

  函數(shù)的最值的應(yīng)用主要體現(xiàn)在用函數(shù)知識求解實際問題上,從文字表述上常常表現(xiàn)為“工程造價最低”,“利潤最大”或“面積(體積)最大(最小)”等諸多現(xiàn)實問題上,求解時要特別關(guān)注實際意義對自變量的制約,以便能正確求得最值.

  (四)、函數(shù)的奇偶性

  1、函數(shù)的奇偶性的定義:對于函數(shù)f(x),如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函數(shù)f(x)就叫做奇函數(shù)(或偶函數(shù)).

  正確理解奇函數(shù)和偶函數(shù)的定義,要注意兩點:(1)定義域在數(shù)軸上關(guān)于原點對稱是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恒等式.(奇偶性是函數(shù)定義域上的整體性質(zhì)).

  2、奇偶函數(shù)的定義是判斷函數(shù)奇偶性的主要依據(jù)。為了便于判斷函數(shù)的奇偶性,有時需要將函數(shù)化簡或應(yīng)用定義的等價形式。

高中數(shù)學考點整理歸納相關(guān)文章

1.

2.高中數(shù)學學習方法:知識點總結(jié)最全版

3.高中數(shù)學必考知識點歸納

4.高中數(shù)學重點知識結(jié)構(gòu)總結(jié)

5.高三數(shù)學知識點梳理

6.高中數(shù)學知識點總結(jié)

7.高考數(shù)學知識點歸納整理

8.高二數(shù)學知識點總結(jié)

9.高中數(shù)學推理知識點總結(jié)

10.高一數(shù)學重點知識點公式總結(jié)

高中數(shù)學考點整理歸納

數(shù)學是最重要的一科了,高考復習資料很多,現(xiàn)在學生經(jīng)常陷入書山題海不能自拔!高考題千變?nèi)f化,萬變不離其宗。宗就是“高考考點”。接下來?
推薦度:
點擊下載文檔文檔為doc格式

精選文章

  • 高中數(shù)學老師工作總結(jié)大全
    高中數(shù)學老師工作總結(jié)大全

    時間乘著年輪循序往前,高中數(shù)學的教學工作已經(jīng)結(jié)束了,回顧這段時間中有什么值得分享的成績呢?該好好寫一份工作總結(jié),分析一下過去這段時間的工作

  • 高中數(shù)學一輪復習計劃
    高中數(shù)學一輪復習計劃

    已經(jīng)是高三了,我們這些學生已經(jīng)面臨著高考的挑戰(zhàn),這個時候我們可得好好準備一份復習計劃才行!這里給大家整理了一些有關(guān)高中數(shù)學一輪復習計劃,希

  • 高中數(shù)學教案范文參考
    高中數(shù)學教案范文參考

    我曾聽到有人說我是數(shù)學的反對者,是數(shù)學的敵人,但沒有人比我更尊重數(shù)學,因為它完成了我不曾得到其成就的業(yè)績——哥德。今天小編在這給大家整理

  • 2020年數(shù)學高考考點知識
    2020年數(shù)學高考考點知識

    高考復習,找到相關(guān)內(nèi)容進行提前準備,抓住復習的主動權(quán)。那么數(shù)學如何復習?下面小編給大家整理了關(guān)于2020年數(shù)學高考考點知識,希望對你有幫助!高考

423454