高中數(shù)學等差數(shù)列教案大全
等差數(shù)列是指從第二項起,每一項與它的前一項的差等于同一個常數(shù)的一種數(shù)列,常用A、P表示。這個常數(shù)叫做等差數(shù)列的公差,公差常用字母d表示。接下來是小編為大家整理的高中數(shù)學等差數(shù)列教案大全,希望大家喜歡!
高中數(shù)學等差數(shù)列教案大全一
“等差數(shù)列”教學設計
一、教學內容分析
等差數(shù)列是《普通高中課程標準實驗教科書?數(shù)學5》(人教版)第二章數(shù)列第二節(jié)等差數(shù)列第一課時。
數(shù)列是高中數(shù)學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面,?數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學習數(shù)列也為進一步學習數(shù)列的極限等內容做好準備。而等差數(shù)列是在學生學習了數(shù)列的有關概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎上,對數(shù)列的知識進一步深入和拓廣。
二、教學目標
1、通過本節(jié)課的學習使學生理解并掌握等差數(shù)列的概念,能用定義判斷一個數(shù)列是否為等差數(shù)列。
2、引導學生了解等差數(shù)列的通項公式的推導過程及思想,會求等差數(shù)列的公差及通項公式,能在解題中靈活應用,初步引入“數(shù)學建?!钡乃枷敕椒ú⒛苓\用;并在此過程中培養(yǎng)學生觀察、分析、歸納、推理的能力。
3、在領會函數(shù)與數(shù)列關系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。
三、教學重難點
重點:
?、俚炔顢?shù)列的概念。
②等差數(shù)列的通項公式的推導過程及應用。
難點:
?、倮斫獾炔顢?shù)列“等差”的特點及通項公式的含義。
?、诶斫獾炔顢?shù)列是一種函數(shù)模型。
四、學習者分析
普通高中學生經(jīng)過一年的高中的學習生活,已經(jīng)慢慢習慣的高中的學習氛圍,大部分學生知識經(jīng)驗已較為豐富,且對數(shù)列的知識有了初步的接觸和認識,已經(jīng)熟悉由觀察到抽象的數(shù)學活動過程,對函數(shù)、方程思想體會逐漸深刻,應用數(shù)學公式的能力逐漸加強。他們的智力發(fā)展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力。但也有一部分學生的基礎較弱,學習數(shù)學的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發(fā),注重引導、啟發(fā)、研究和探討以符合這類學生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。
五、教學策略選擇與設計
結合本節(jié)課的特點,我設計了從教法、學法兩種方法對等差數(shù)列的通項公式進行推導,讓學生更好的理解。通過引入實例來啟發(fā)學生,挺高學生的學習興趣,是學生更加形象、愉快的去學習這堂課。下面是我教學設計:
1.教法
⑴誘導思維法:這種方法有利于學生對知識進行主動建構;有利于突出重點,突破難點;有利于調動學生的主動性和積極性,發(fā)揮其創(chuàng)造性。
?、品纸M討論法:有利于學生進行交流,及時發(fā)現(xiàn)問題,解決問題,調動學生的積極性。
?、侵v練結合法:可以及時鞏固所學內容,抓住重點,突破難點。
2.學法
引導學生首先從四個現(xiàn)實問題(數(shù)數(shù)問題、女子舉重獎項設置問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點,推導出等差數(shù)列的通項公式;可以對各種能力的同學引導認識多元的推導思維方法。
六、教學資源與工具設計
(一)學習環(huán)境:多媒體教室
(二)用到的資源:
1 查找有關等差數(shù)列的實例
2 寫出上課要提到的問題
3 制作相關PPT課件
七、教學過程
教學環(huán)境 教學內容與
教師活動 學生活動 設計意圖或依據(jù) 情境導入
在南北朝時期《張邱建算經(jīng)》中,有一道題“今有十等人,每等一人,宮賜金以等次差降之,上三人先入,得金 四斤,持出,下四人后入得金三斤,持出,中間三人未到者,亦依等次更 給,問各得金幾何,及未到三人復應得金幾何“。 這個問題該怎樣解決呢?
由學生觀察分析并得出答案: 在現(xiàn)實生活中,我們經(jīng)常這樣數(shù)數(shù),從0開始,每隔5數(shù)一次,可以得到數(shù)列:0,5,___,___,___,___,?
水庫的管理人員為了保證優(yōu)質魚 類有良好的生活環(huán)境,用定期放水清理水庫的雜魚。如果一個水庫的水位 為18cm,自然放水每天水位降低2.5m,最低降至5m。那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位組成數(shù)列(單位:m):18,15.5,13,10.5,8,5.5
思考:同學們觀察一下上面的這兩個數(shù)列: 0,5,10,15,20, ① 18,15.5,13,10.5,8,5.5 ② 看這些數(shù)列有什么共同特點呢?
傾聽和觀察分析,發(fā)表各自的意見。
課堂引入,引向課題 探索與歸納
對于以上幾組數(shù)列我們稱它們?yōu)榈炔顢?shù)列。請同學們根據(jù)我們剛才分析等差數(shù)列的特征,嘗試著給等差數(shù)列下個定義:等差數(shù)列:一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列。這個常數(shù)叫做等差數(shù)列的公差,公差通常用字母d表示。那么對于以上兩組等差數(shù)列,它們的公差依次是5,5,-2.5。
提問:如果在a與b中間插入一個數(shù)A,使a,A,b成等差數(shù)列數(shù)列,那么A應滿足什么條件?
由三個數(shù)a,A,b組成的等差數(shù)列可以看成最簡單的等差數(shù)列,這時,A叫做a與b
的等差中項。
不難發(fā)現(xiàn),在一個等差數(shù)列中,從第2項起,每一項(有窮數(shù)列的末項除外)都是它的前一項與后一項的等差中項。 如數(shù)列:1,3,5,7,9,11,13?中5是3和7的等差中項,1和9的等差中項。9是7和11的等差中項,5和13的等差中項??磥恚?/p>
從而可得到在一等差數(shù)列中,若m+n=p+q則
高中數(shù)學等差數(shù)列教案大全二
等差數(shù)列的教學設計
教學理念: 數(shù)學教學是思維過程的教學,如何引導學生參與到教學過程中來,尤其是在思維上深層次的 參與 ,是促進學生良好的認知結構,培養(yǎng)能力,全面提高素質的關鍵。數(shù)學教學中的探究式對培養(yǎng)和提高學生的自主性、能動性和創(chuàng)造性有著非常重要的意義。
設計思想: 本節(jié)借助多媒體輔助手段,創(chuàng)設問題的情境,讓探究式教學走進課堂,保障學生的主體地位,喚醒學生的主體意識,發(fā)展學生的主體能力,塑造學生的主體人格,讓學生在參與中學會學習、學會合作、學會創(chuàng)新。
一、教材分析:高考資源網(wǎng)
教學內容:
高中數(shù)學必修第五模塊第二章第二節(jié),等差數(shù)列,兩課時內容,本節(jié)是第一課時,研究等差數(shù)列的定義、通項公式的推導,借助生活中豐富的典型實例,讓學生通過分析、推理、歸納等活動過程,從中了解和體驗等差數(shù)列的定義和通項公式。
教學地位:
本節(jié)是第二章的基礎,為以后學習等差數(shù)列的求和、等比數(shù)列奠定基礎,是本章的重點內容。在高考中也是重點考察內容之一,并且在實際生活中有著廣泛的應用,它起著承前啟后的作用。同時也是培養(yǎng)學生數(shù)學能力的良好題材。等差數(shù)列是學生探究特殊數(shù)列的開始,它對 后續(xù) 內容的學習,無論在知識上,還是在方法上都具有積極的意義。高考資源網(wǎng)
教學重點:
理解等差數(shù)列概念,探索并掌握等差數(shù)列的通項公式,會用公式解決一些簡單的問題,體會等差數(shù)列與一次函數(shù)之間的關系。
教學難點:
對等差數(shù)列概念的理解及從函數(shù)、方程角度理解通項公式,概括通項公式推導過程中體現(xiàn)出的數(shù)學思想方法。
二、學習者分析:
高二學生已經(jīng)具有一定的理性分析能力和概括能力,且對數(shù)列的知識有了初步的接觸和認識,對數(shù)學公式的運用已具備一定的技能,已經(jīng)熟悉由觀察到抽象的數(shù)學活動過程,對函數(shù)、方程思想體會逐漸深刻。他們的思維正從屬于經(jīng)驗性的邏輯思維向抽象思維發(fā)展,但仍需要依賴一定的具體形象的經(jīng)驗材料來理解抽象的邏輯關系。
三、教學目標:高考資源網(wǎng)
知識目標:
理解等差數(shù)列定義,掌握等差數(shù)列的通項公式。
能力目標:高考資源網(wǎng)
培養(yǎng)學生觀察、歸納能力,在學習過程中,體會數(shù)形結合思想、歸納思想和化歸思想并加深認識;通過概念的引入與通項 公式 的推導,培養(yǎng)學生分析探索能力,增強運用公式解決實際問題的能力。
情感目標:
?、偻ㄟ^個性化的學習增強學生的自信心和意志力。
②通過師生、生生的合作學習,增強學生團隊協(xié)作能力的培養(yǎng),增強主動與他人合作交流的意識。
?、垠w驗從特殊到一般,又到特殊的認知規(guī)律,培養(yǎng)學生勇于創(chuàng)新的科學精神。
四、教法和學法的分析:高考資源網(wǎng)
通過探究式教學方法充分利用現(xiàn)實 情景 ,盡可能的增加教學過程的趣味性、實踐性。利用多媒體課件和實例等豐富學生的學習資源,強調學生動手操作試驗和主動參與,在教師的啟發(fā)指導下,讓學生自己去分析、探索,在探索過程中研究和領悟得出的結論,從而使學生即獲得知識又發(fā)展智能的目的。
2、 在學法上,引導學生多角度,多層面認識事物,學會探究。教師是學生的學習的組織者、促進著、合作者,在本節(jié)課的備課和教學過程中,為學生的動手實踐,自主探索與合作交流的機會搭建平臺,鼓勵學生提出自己的見解,學會提出問題解決問題,通過恰當?shù)慕虒W方式讓學生學會自我調適,自我選擇。
五、教學媒體和教學技術的選用
多媒體計算機和幾何畫板
通過計算機模擬演示,使學生獲得感性知識的同時,為掌握理性知識創(chuàng)造條件,這樣做,可以使學生有興趣地學習,注意力也容易集中,符合教學論中的直觀性原則和可接受性原則。本節(jié)課打破傳統(tǒng)的一言堂的格局代之以人為本、民主、開放、特色和建立在信息網(wǎng)絡平臺上的現(xiàn)代教學格局。
六、教學程序:
(一)設置問題,引導發(fā)現(xiàn)形成概念w。
師:看大屏幕。高考資源網(wǎng)
情景1(播放奧運會女子舉重場面)
2008年北京奧運會,女子舉重共設置7個級別,其中較輕的4個級別體重組成數(shù)列(單位:kg):
48,53,58,63
情景2 水庫的管理員為了保證優(yōu)質魚類有良好的生活環(huán)境,定期放水清庫的辦法清理水庫中的雜魚。如果一個水庫的水位18m,自然放水每天水位下降2.5m,最低降至5m。那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位組成數(shù)列(單位:m)
18,15.5,13,10.5,8,5.5
情景3 我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本金計算下一期的利息。按照單利計算本利和的公式是:
本利和=本金 (1+利率 存期)
時間 年初本金(元) 年末本利和(元) 第1年 10000 10072 第2年 10000 10144 第3年 10000 10216 第4年 10000 10288 第5年 10000 10360 例如,按活期存入10000元,年利率是0.72%,那么按照單利,5年內各年末本利和分別是:如下表(假設5年既不加存款也不取款,且不扣利息稅)
各年末本利和(單位:元)高考資源網(wǎng)
10072,10144,10216,10288,10360
師:思考上述各組數(shù)據(jù)反映了什么樣的信息?
每行數(shù)有何共同特點?請同學們互相討論。
(學生紛紛議論,有的幾個人在一起商量)高考資源網(wǎng)
(從宏觀上 : 情景1 讓學生體驗成功申辦奧運會的喜悅心情,激發(fā)勇于拼搏的堅強意志;情景2讓學生認識到保護水資源,保護生態(tài)平衡的意識;情景3 倡導節(jié)約意識,納稅意識。)
從微觀上,數(shù)學研究的對象是數(shù),我們拋開具體的背景,從表格中抽象出一般數(shù)列。
48 53 58 63 18 15.5 13 10.5 8 5.5 10072 10144 10216 10288 10360 師:(啟發(fā)學生)你能用數(shù)學語言來描述上述數(shù)列的共同特征嗎?
學生1:后一項與它的前一項的差等于常數(shù)。
師:反例:1,3,5,6,12,這樣的數(shù)列特征和上述數(shù)列的特征一樣嗎?
學生1:不一樣,要加上同一個常數(shù)。
學生2:每一項與它的前一項的差等于同一個常數(shù)。
師:反例:1,3,4,5,6,7,這樣的數(shù)列特征和上述數(shù)列的特征一樣嗎?
學生2:不一樣,必須從第二項開始。
學生3:從第二項起,每一項與它的前一項的差等于同一個常數(shù)。
(教師把學生的回答寫在黑板上,通過反例,使學生深刻理解幾組數(shù)列的共同特征:
= 1 GB3 ① 同一個常數(shù); = 2 GB3 ② 從第二項起)
師:能不能用數(shù)學語言表示?
學生4:
師:等價嗎?
學生4:應加上(d是常數(shù)), .
(讓學生充分討論,注意文字語言與數(shù)學符號語言的轉化的嚴謹性)
師:對式子進行變形可得 。
這樣的數(shù)列在生活中的例子,誰能再舉幾個?
學生5:某劇場前8排的座位數(shù)分別是
52,50,48,46,44,42,40,38.
學生6:全國統(tǒng)一鞋號中成年女鞋的各種尺碼分別是
21,21.5 ,22 ,22.5 ,23 ,23.5 ,24 ,24.5 ,25
學生7:馬路邊的路燈,相鄰兩盞之間的距離構成的數(shù)列。
師:如何用數(shù)列表示?
學生8:設相鄰兩盞之間的距離為a,該數(shù)列為
a,a,a,a,……,為常數(shù)列,即常數(shù)列都具有這種特征。
(讓學生舉例,加深感性認識)
師:滿足這種特征的數(shù)列很多,我們有必要為這樣的數(shù)列取一個名字?
學生(共同):等差數(shù)列。
師:(學生敘述,板書定義)高考資源網(wǎng)
一般的,如果一個數(shù)列從第二項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫等差數(shù)列,d為公差,a1為數(shù)列的首相。
提出課題《等差數(shù)列》
對定義進行分析,強調: = 1 GB3 ① 同一個常數(shù); = 2 GB3 ② 從第二項起。注意對概念嚴謹性的分析。
師:回到表格中,分別說出它們的公差。
學生9:依次是d=7,d=1,d=8,d=-6,d=5,d=-2.5,d=72.
師:在計算年末本利和的問題中求 時,能不能不按本利和=本金 (1+利率 存期)
求而按數(shù)列的特征求呢?
學生:若能求得通項公式,問題就很好解決。
(再提出問題,引導發(fā)現(xiàn)求通項公式的必要性)
(二)啟發(fā)、引導推出等差數(shù)列的通項公式
師:把問題推廣到一般情況。若一個數(shù)列 是等差數(shù)列,它的公差是d,那么數(shù)列 的通項公式是什么?高考資源網(wǎng)
啟發(fā)學生:(歸納、猜想)可用首相與公差表示數(shù)列中任意一項。
學生10: 即:
即:
即:
由此可得:
師:從第幾項開始歸納的?
學生10:第二項,所以n≥2。
師:n=1時呢?
高中數(shù)學等差數(shù)列教案大全三
一.設計思想
數(shù)學是思維的體操,是培養(yǎng)學生分析問題、解決問題的能力及創(chuàng)造能力的載體,新課程倡導:強調過程,強調學生探索新知識的經(jīng)歷和獲得新知的體驗,不能在讓教學脫離學生的內心感受,必須讓學生追求過程的體驗?;谝陨险J識,在設計本節(jié)課時,教師所考慮的不是簡單告訴學生等差數(shù)列的定義和通項公式,而是創(chuàng)造一些數(shù)學情境,讓學生自己去發(fā)現(xiàn)、證明。在這個過程中,學生在課堂上的主體地位得到充分發(fā)揮,極大的激發(fā)了學生的學習興趣,也提高了他們提出問題解決問題的能力,培養(yǎng)了他們的創(chuàng)造力。這正是新課程所倡導的數(shù)學理念。
本節(jié)課借助多媒體輔助手段,創(chuàng)設問題的情境,讓探究式教學走進課堂,保障學生的主體地位,喚醒學生的主體意識,發(fā)展學生的主體能力,塑造學生的主體人格,讓學生在參與中學會學習、學會合作、學會創(chuàng)新。
二.教材分析
高中數(shù)學必修五第二章第二節(jié),等差數(shù)列,兩課時內容,本節(jié)是第一課時。研究等差數(shù)列的定義、通項公式的推導,借助生活中豐富的典型實例,讓學生通過分析、推理、歸納等活動過程,從中了解和體驗等差數(shù)列的定義和通項公式。通過本節(jié)課的學習要求理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式,并且了解等差數(shù)列與一次函數(shù)的關系。
本節(jié)是第二章的基礎,為以后學習等差數(shù)列的求和、等比數(shù)列奠定基礎,是本章的重點內容。在高考中也是重點考察內容之一,并且在實際生活中有著廣泛的應用,它起著承前啟后的作用。同時也是培養(yǎng)學生數(shù)學能力的良好題材。等差數(shù)列是學生探究特殊數(shù)列的開始,它對后續(xù)內容的學習,無論在知識上,還是在方法上都具有積極的意義。
三.學情分析
學生已經(jīng)具有一定的理性分析能力和概括能力,且對數(shù)列的知識有了初步的接觸和認識,對數(shù)學公式的運用已具備一定的技能,已經(jīng)熟悉由觀察到抽象的數(shù)學活動過程,對函數(shù)、方程思想體會逐漸深刻。他們的思維正從屬于經(jīng)驗性的邏輯思維向抽象思維發(fā)展,但仍需要依賴一定的具體形象的經(jīng)驗材料來理解抽象的邏輯關系。同時思維的嚴密性還有待加強。
四.教學目標
1.知識目標:理解等差數(shù)列概念,掌握等差數(shù)列的通項公式,了解等差數(shù)列與一次函數(shù)的關系。
2.能力目標:培養(yǎng)學生觀察、歸納能力,應用數(shù)學公式的能力及滲透函數(shù)、方程的思想。
3.情感目標:體驗從特殊到一般,又到特殊的認知規(guī)律,提高數(shù)學猜想、歸納的能力。
五.重點、難點
教學重點:等差數(shù)列的概念及通項公式的推導。
教學難點:對等差數(shù)列概念的理解及學會通項公式的推導及應用。
六.教學策略和手段
數(shù)學教學是數(shù)學活動的教學,是師生之間、學生之間交往互動共同發(fā)展的過程,結合學生的實際情況,及本節(jié)內容的特點,我采用的是“問題教學法”,其主導思想是以探究式教學思想為主導,由教師提出一系列精心設計的問題,在教師的啟發(fā)指導下,讓學生自己去分析、探索,在探索過程中研究和領悟得出的結論,從而使學生即獲得知識又發(fā)展智能的目的。
教學手段:多媒體計算機和傳統(tǒng)黑板相結合。通過計算機模擬演示,使學生獲得感性知識的同時,為掌握理性知識創(chuàng)造條件,這樣做,可以使學生有興趣地學習,注意力也容易集中,符合教學論中的直觀性原則和可接受性原則。而保留使用黑板則能讓學生更好的經(jīng)歷整個教學過程。
七.課前準備
學生預習,教師做好課件并安裝好。
八.教學過程
創(chuàng)設情景,引入概念
設計意圖:希望學生能通過日常生活中的實際問題的分析對比,建立等差數(shù)列模型,體驗數(shù)學發(fā)現(xiàn)和創(chuàng)造的過程。
師生活動:
情景1:
師—把班上學生學號從小到大排成一列 :
學生:
師—這是數(shù)列嗎?你能歸納出它的通項公式嗎?
學生—是,
師—把上面的數(shù)列各項依次記為 ,填空:
學生—填空并歸納出一般規(guī)律: ,( )
師—上面這個規(guī)律還有其他形式嗎?
學生—或者寫成 ,( )
注:要對強調 ,原因在于 有意義。
師—你能用普通語言概括上面的規(guī)律嗎?
學生—自由發(fā)言,選擇最恰當?shù)恼Z言。
上面的數(shù)列已找出這一特殊規(guī)律,下面再觀察一些數(shù)列并也找出它們的規(guī)律。
情景2:看幻燈片上的實例
(1)2008年北京奧運會,女子舉重共設置7個級別,其中較輕的4個級別體重組成數(shù)列(單位:kg):
48,53,58,63
(2)水庫的管理員為了保證優(yōu)質魚類有良好的生活環(huán)境,定期放水清庫的辦法清理水庫中的雜魚。如果一個水庫的水位18m,自然放水每天水位下降2.5m,最低降至5m。那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位組成數(shù)列(單位:m)
18,15.5,13,10.5,8,5.5
(3)我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本金計算下一期的利息。按照單利計算本利和的公式是:
本利和=本金 (1+利率 存期)
時間 年初本金(元) 年末本利和(元) 第1年 10000 10072 第2年 10000 10144 第3年 10000 10216 第4年 10000 10288 第5年 10000 10360 例如,按活期存入10000元,年利率是0.72%, 那么按照單利,5年內各年末本利和分別是:如下表(假設5年既不加存款也不取款,且不扣利息稅)
各年末本利和(單位:元)
10072,10144,10216,10288,10360
師:上面的三個數(shù)列又分別有什么規(guī)律呢?
學生—(1) , ,
(2) , ,
(3) , ,
師—歸納上面數(shù)列的共同特征:
(d是常數(shù)), , ,
師 —滿足這種特征的數(shù)列很多,我們有必要為這樣的數(shù)列取一個名字?
學生(共同)—等差數(shù)列。
提出課題《等差數(shù)列》
師—給出文字敘述的定義(學生敘述,板書定義):
一般的,如果一個數(shù)列從第二項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫等差數(shù)列,d為公差,a1為數(shù)列的首項。
對定義進行分析,強調: = 1 GB3 ① 同一個常數(shù); = 2 GB3 ② 從第二項起。
師—這樣的數(shù)列在生活中的例子,誰能再舉幾個?
學生—某劇場前8排的座位數(shù)分別是
52,50,48,46,44,42,40,38.
學生—全國統(tǒng)一鞋號中成年女鞋的各種尺碼分別是
21,21.5 ,22 ,22.5 ,23 ,23.5 ,24 ,24.5 ,25
搶答:觀察下列數(shù)列是否為等差數(shù)列
1,2,4,6,8,10,12,……
0,1,2,3,4,5,6,……
3,3,3,3,3,3,3……
2,4,7,11,16,……
-8,-6,-4,0,2,4,……
3,0,-3,-6,-9,……
注:常數(shù)列也是等差數(shù)列,公差是0。
推進概念,發(fā)現(xiàn)性質
設計意圖:概括等差中項的概念??偨Y等差中項公式,用于發(fā)現(xiàn)等差數(shù)列的性質。
師生活動:
師—想一想,一個等差數(shù)列最少有幾項?它們之間有什么關系?
學生思考后回答,至少三項,然后老師引導學生概括等差中項的概念。
設三個數(shù) 成等差數(shù)列,則A叫a與b的等差中項。同時有A-a=b-A,
說明:(1)上面式子反過來也成立。
(2)等差數(shù)列中的任意連續(xù)三項都構成等差數(shù)列 ,反之亦成立。
(三)探究通項公式
設計意圖:通過具體數(shù)列的通項公式,總結一般等差數(shù)列的通項公式,體會特殊到一般的數(shù)學思想方法。
師生活動:
師—對于一個數(shù)列,我們最關心的是每一項,而這就要求我們能知道它的通項公式。下面一起來研究等差數(shù)列的通項公式。
先寫出上面引例中等差數(shù)列的通項公式。再推導一般等差數(shù)列的通項公式。
師—若一個數(shù)列 是等差數(shù)列,它的公差是d,那么數(shù)列 的通項公式是什么?
啟發(fā)學生:(歸納、猜想)可用首項與公差表示數(shù)列中任意一項。
學生— 即:
即:
即:
由此可得:
師—從第幾項開始歸納的?
學生—第二項,所以n≥2。
師—n=1時呢?
學生—當n=1時,等式也是成立,因而等差數(shù)列的通項公式
( )
師—很好!
高中數(shù)學等差數(shù)列教案大全相關文章:
7.高考數(shù)學數(shù)列基本概念及等差數(shù)列1