国产成人v爽在线免播放观看,日韩欧美色,久久99国产精品久久99软件,亚洲综合色网站,国产欧美日韩中文久久,色99在线,亚洲伦理一区二区

學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高三學(xué)習(xí)方法>高三數(shù)學(xué)>

2023高中數(shù)學(xué)等比數(shù)列教案設(shè)計(jì)大全

時(shí)間: 燕純0 分享

  教案中對(duì)每個(gè)課題或每個(gè)課時(shí)的教學(xué)內(nèi)容,教學(xué)步驟的安排,教學(xué)方法的選擇,板書設(shè)計(jì),教具或現(xiàn)代化教學(xué)手段的應(yīng)用,各個(gè)教學(xué)步驟教學(xué)環(huán)節(jié)的時(shí)間分配等等,都要經(jīng)過周密考慮,精心設(shè)計(jì)而確定下來,體現(xiàn)著很強(qiáng)的計(jì)劃性。接下來是小編為大家整理的2020高中數(shù)學(xué)等比數(shù)列教案設(shè)計(jì)大全,希望大家喜歡!

  2020高中數(shù)學(xué)等比數(shù)列教案設(shè)計(jì)大全一

  教學(xué)目標(biāo)

  知識(shí)與技能:理解并掌握等比數(shù)列的定義和通項(xiàng)公式,并加以初步應(yīng)用。

  過程與方法:通過概念、公式和例題的教學(xué),滲透類比思想、方程思想、函數(shù)思想以及從特殊到—般等數(shù)學(xué)思想,著重培養(yǎng)學(xué)生觀察、比較、概括、歸納、演繹等方面的思維能力,并進(jìn)—步培養(yǎng)運(yùn)算能力,分析問題和解決問題的能力,增強(qiáng)應(yīng)用意識(shí)。

  情感態(tài)度與價(jià)值觀:在傳授知識(shí)培養(yǎng)能力的同時(shí),培養(yǎng)學(xué)生勇于探求,敢于創(chuàng)新的精神,同時(shí)幫助學(xué)生樹立克服困難的信心,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣意志品質(zhì)。

  教學(xué)重點(diǎn)和難點(diǎn)

  教學(xué)重點(diǎn):等比數(shù)列的概念的形成與深化;等比數(shù)列通項(xiàng)公式的推導(dǎo)及應(yīng)用。

  教學(xué)難點(diǎn):等比數(shù)列概念深化:體現(xiàn)它是一種特殊函數(shù),等比數(shù)列的判定、證明及初步應(yīng)用。

  教學(xué)過程

  (一)等比數(shù)列的概念

  1、創(chuàng)設(shè)情境,引入概念

  引例1:國(guó)際象棋起源于印度,關(guān)于國(guó)際象棋有這樣一個(gè)傳說,國(guó)王要獎(jiǎng)勵(lì)國(guó)際象棋的發(fā)明者,問他有什么要求,發(fā)明者說:“請(qǐng)?jiān)谄灞P上的第一個(gè)格子上放1粒麥子,第二個(gè)格子上放2粒麥子,第三個(gè)格子上放4粒麥子,第四個(gè)格子上放8粒麥子,依次類推,直到第64個(gè)格子放滿為止?!? 國(guó)王慷慨地答應(yīng)了他。你認(rèn)為國(guó)王有能力滿足上述要求嗎?

  所構(gòu)成的數(shù)列:1,2,4,8,16,32,…

  引例2:某轎車的售價(jià)約36萬元,年折舊率約為10%(就是說這輛車每年減少它的價(jià)值的10%),那么該車從購(gòu)買當(dāng)年算起,逐年的價(jià)值依次為:

  引例3:《莊子·天下篇》曰:“一尺之棰,日取其半,萬世不竭.”

  如果把“一尺之棰”看成單位”1”,你能用一個(gè)數(shù)列來表達(dá)這句話的含義嗎?“一尺長(zhǎng)的木棒,每日取其一半,永遠(yuǎn)也取不完”

  等比數(shù)列:一般的,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的比等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等比數(shù)列。這個(gè)常數(shù)叫做等比數(shù)列的公比,公比通常用字母q表示。(q≠0且an ≠0 )

  2、抓住本質(zhì),理解概念

  試判斷下列數(shù)列是不是等比數(shù)列,如果是求出公比。

  (1) 1,3,9,27,81,243,…(公比為3)

  (2) 1,1,1,1,... (公比為1)

  (3) a, a, a, a,…(不一定)

  (4) 1, 6, 36, 0,…(不是)

  (5) ,3,6,12… …

  (二)、等比數(shù)列通項(xiàng)公式的推導(dǎo)

  演繹推理論證(累乘法)

  設(shè)a1,a2,a3…是公比為q的等比數(shù)列,則由定義得:

  ……………………………………(1)

  ……………………………………(2)

  ……………………………………(n-1)

  問:結(jié)合求等差數(shù)列的通項(xiàng)公式的方法,如何求得等比數(shù)列的通項(xiàng)公式?

  由定義式得:(n-1)個(gè)等式

  2020高中數(shù)學(xué)等比數(shù)列教案設(shè)計(jì)大全二

  教材分析:

  1、內(nèi)容簡(jiǎn)析:

  本節(jié)主要內(nèi)容是等比數(shù)列的概念及通項(xiàng)公式,它是繼等差數(shù)列后有一個(gè)特殊數(shù)列,是研究數(shù)列的重要載體,與實(shí)際生活有密切的聯(lián)系,如細(xì)胞分裂、銀行貸款問題等都要用等比數(shù)列的知識(shí)來解決,在研究過程中體現(xiàn)了由特殊到一般的數(shù)學(xué)思想、函數(shù)思想和方程思想,在高考中占有重要地位。

  2、教學(xué)目標(biāo)確定:

  從知識(shí)結(jié)構(gòu)來看,本節(jié)核心內(nèi)容是等比數(shù)列的概念及通項(xiàng)公式,可從等比數(shù)列的“等比”的特點(diǎn)入手,結(jié)合具體的例子來學(xué)習(xí)等比數(shù)列的概念,同時(shí),還要注意“比”的特性。在學(xué)習(xí)等比數(shù)列的定義的基礎(chǔ)上,導(dǎo)出等比數(shù)列的通項(xiàng)公式以及一些常用的性質(zhì)。從而可以確定如下教學(xué)目標(biāo)(三維目標(biāo)):

  第一課時(shí):

  (1)理解等比數(shù)列的概念 ,掌握等比數(shù)列的通項(xiàng)公式及公式的推導(dǎo)

  (2)在教學(xué)過程中滲透方程、函數(shù)、特殊到一般等數(shù)學(xué)思想,提高學(xué)生觀察、歸納、猜想、證明等邏輯思維能力

  (3)通過對(duì)等比數(shù)列通項(xiàng)公式的推導(dǎo),培養(yǎng)學(xué)生發(fā)現(xiàn)意識(shí)、創(chuàng)新意識(shí)

  第二課時(shí):

  (1)加深對(duì)等比數(shù)列概念理解,靈活運(yùn)用等比數(shù)列的定義及通項(xiàng)公式,了解等比中項(xiàng)概念,掌握等比數(shù)列的性質(zhì)

  (2)運(yùn)用等比數(shù)列的定義及通項(xiàng)公式解決問題,增強(qiáng)學(xué)生的應(yīng)用

  3、教學(xué)重點(diǎn)與難點(diǎn):

  第一課時(shí):

  重點(diǎn):等比數(shù)列的定義及通項(xiàng)公式

  難點(diǎn):應(yīng)用等比數(shù)列的定義及通項(xiàng)公式,解決相關(guān)簡(jiǎn)單問題

  第二課時(shí):

  重點(diǎn):等比中項(xiàng)的理解與運(yùn)用,及等比數(shù)列定義及通項(xiàng)公式的應(yīng)用

  難點(diǎn):靈活應(yīng)用等比數(shù)列的定義及通項(xiàng)公式、性質(zhì)解決相關(guān)問題

  學(xué)情分析:

  從整個(gè)中學(xué)數(shù)學(xué)教材體系安排分析,前面已安排了函數(shù)知識(shí)的學(xué)習(xí),以及等差數(shù)列的有關(guān)知識(shí)的學(xué)習(xí),但是對(duì)于國(guó)際象棋故事中的問題,學(xué)生還是不能解決,存在疑問。本課正是由此入手來引發(fā)學(xué)生的認(rèn)知沖突,產(chǎn)生求知的欲望。而矛盾解決的關(guān)鍵依然依賴于學(xué)生原有的認(rèn)知結(jié)構(gòu)──在研究等差數(shù)列中用到的思想方法,于是從幾個(gè)特殊的對(duì)應(yīng)觀察、分析、歸納、概括得出等比數(shù)列的定義及通項(xiàng)公式。

  高一學(xué)生正處于從初中到高中的過度階段,對(duì)數(shù)學(xué)思想和方法的認(rèn)識(shí)還不夠,思維能力比較欠缺,他們重視具體問題的運(yùn)算而輕視對(duì)問題的抽象分析。同時(shí),高一階段又是學(xué)生形成良好的思維能力的關(guān)鍵時(shí)期。因此,本節(jié)教學(xué)設(shè)計(jì)一方面遵循從特殊到一般的認(rèn)知規(guī)律,另一方面也加強(qiáng)觀察、分析、歸納、概括能力培養(yǎng)。

  多數(shù)學(xué)生愿意積極參與,積極思考,表現(xiàn)自我。所以教師可以把盡可能多的時(shí)間、空間讓給學(xué)生,讓學(xué)生在參與的過程中,學(xué)習(xí)的自信心和學(xué)習(xí)熱情等個(gè)性心理品質(zhì)得到很好的培養(yǎng)。這也體現(xiàn)了教學(xué)工作中學(xué)生的主體作用。

  教法選擇與學(xué)法指導(dǎo):

  由于等比數(shù)列與等差數(shù)列僅一字之差,在知識(shí)內(nèi)容上是平行的,可用比較法來學(xué)習(xí)等比數(shù)列的相關(guān)知識(shí)。在深刻理解等差數(shù)列與等比數(shù)列的區(qū)別與聯(lián)系的基礎(chǔ)上,牢固掌握數(shù)列的相關(guān)知識(shí)。因此,在教法和學(xué)法上可做如下考慮:

  1、教法:采用問題啟發(fā)與比較探究式相結(jié)合的教學(xué)方法

  教法構(gòu)思如下:提出問題 引發(fā)認(rèn)知沖突 觀察分析 歸納概括 得出結(jié)論 總結(jié)提高。在教師的精心組織下,對(duì)學(xué)生各種能力進(jìn)行培養(yǎng),并以促進(jìn)學(xué)生發(fā)展,又以學(xué)生的發(fā)展帶動(dòng)其學(xué)習(xí)。同時(shí),它也能促進(jìn)學(xué)生學(xué)會(huì)如何學(xué)習(xí),因而特別有利于培養(yǎng)學(xué)生的探索能力。

  2、學(xué)法指導(dǎo):

  學(xué)生學(xué)習(xí)的目的在于學(xué)會(huì)學(xué)習(xí)、思考,達(dá)到創(chuàng)新的目的,掌握科學(xué)有效的學(xué)習(xí)方法,可增強(qiáng)學(xué)生的學(xué)習(xí)信心,培養(yǎng)其學(xué)習(xí)興趣,提高學(xué)習(xí)效率,從而激發(fā)強(qiáng)烈的學(xué)習(xí)積極性。我考慮從以下幾方面來進(jìn)行學(xué)法指導(dǎo):

  把隱含在教材中的思想方法顯化。如等比數(shù)列通項(xiàng)公式的推導(dǎo)體現(xiàn)了從特殊到一般的方法。其通項(xiàng)公式 是以n為字變量的函數(shù),可利用函數(shù)思想來解決數(shù)列有關(guān)問題。思想方法的顯化對(duì)提高學(xué)生數(shù)學(xué)修養(yǎng)有幫助。

  注重從科學(xué)方法論的高度指導(dǎo)學(xué)生的學(xué)習(xí)。通過提問、分析、解答、總結(jié),培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。訓(xùn)練邏輯思維的嚴(yán)密性和深刻性的目的。

  教學(xué)過程設(shè)計(jì):

  第一課時(shí)

  1、創(chuàng)設(shè)情境,提出問題 (閱讀本章引言并打出幻燈片)

  情境1:本章引言內(nèi)容

  提出問題:同學(xué)們,國(guó)王有能力滿足發(fā)明者的要求嗎?

  引導(dǎo)學(xué)生寫出各個(gè)格子里的麥粒數(shù)依次為:

  1,2, ……, (1)

  于是發(fā)明者要求的麥??倲?shù)是

  情境2:某人從銀行貸款10000元人民幣,年利率為r,若此人一年后還款,二年后還款,三年后還款,……,還款數(shù)額依次滿足什么規(guī)律?

  10000(1+r),10000 ,10000 ,…… (2)

  情境3:將長(zhǎng)度為1米的木棒取其一半,將所得的一半再取其一半,再將所得的木棒繼續(xù)取其一半,……各次取得的木棒長(zhǎng)度依次為多少? …… (3)

  問:你能算出第7次取一半后的長(zhǎng)度是多少嗎?觀察、歸納、猜想得

  2、自主探究,找出規(guī)律:

  學(xué)生對(duì)數(shù)列(1),(2),(3)分析討論,發(fā)現(xiàn)共同特點(diǎn):從第二項(xiàng)起,每一項(xiàng)與前一項(xiàng)的比都等于同一常數(shù)。也就是說這些數(shù)列從第二項(xiàng)起,每一項(xiàng)與前一項(xiàng)的比都具有“相等”的特點(diǎn)。于是得到等比數(shù)列的定義:

  一般地,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等比數(shù)列。這個(gè)常數(shù)叫做等比數(shù)列的公比,公比常用字母 表示,即 。

  如數(shù)列(1),(2),(3)都是等比數(shù)列,它們的公比依次是2,1+r,

  點(diǎn)評(píng):等比數(shù)列與等差數(shù)列僅一字之差,對(duì)比知從第二項(xiàng)起,每一項(xiàng)與前一項(xiàng)之“差”為常數(shù),則為等差數(shù)列,之“比”為常數(shù),則為等比數(shù)列,此常數(shù)稱為“公差”或“公比”。

  3、觀察判斷,分析總結(jié):

  觀察以下數(shù)列,判斷它是否為等比數(shù)列,若是,找出公比,若不是,說出理由,然后回答下面問題:

  1,3,9,27,……

  ……

  1,-2,4,-8,……

  -1,-1,-1,-1,……

  1,0,1,0,……

  思考:①公比 能為0嗎?為什么?首項(xiàng)能為0嗎?

 ?、诠?是什么數(shù)列?

 ?、?數(shù)列遞增嗎? 數(shù)列遞減嗎?

  ④等比數(shù)列的定義也恰好給出了等比數(shù)列的遞推關(guān)系式:

  這一遞推式正是我們證明等比數(shù)列的重要工具。

  選題分析;因?yàn)榈炔顢?shù)列公差 可以取任意實(shí)數(shù),所以學(xué)生對(duì)公比 往往忘卻它不能取0和能取1的特殊情況,以致于在不為具體數(shù)字(即為字母運(yùn)算)時(shí)不會(huì)討論以上兩種情況,故給出問題以揭示學(xué)生對(duì)公比 有防患意識(shí),問題③是讓學(xué)生明白 時(shí)等比數(shù)列的單調(diào)性不定,而 時(shí)數(shù)列為擺動(dòng)數(shù)列,要注意與等差數(shù)列的區(qū)別。

  備選題:已知 則 …… ,……成等比數(shù)列的從要條件是什么?

  4、觀察猜想,求通項(xiàng):

  方法1:由定義知道 ……歸納得:等比數(shù)列的通項(xiàng)公式為:

  (說明:推得結(jié)論的這一方法稱為歸納法,不是公式的證明,要想對(duì)這一方式的結(jié)論給出嚴(yán)格的證明,需在學(xué)習(xí)數(shù)學(xué)歸納法后完成,現(xiàn)階段我們只承認(rèn)它是正確的就可以了)

  方法2:迭代法

  根據(jù)等比數(shù)列的定義有

  ……

  方法3:由遞推關(guān)系式或定義寫出: …… ,通過觀察發(fā)現(xiàn) …… ……

  ,即:

  (此證明方法稱為“累商法”,在以后的數(shù)列證明中有重要應(yīng)用)

  公式 的特征及結(jié)構(gòu)分析:

  2020高中數(shù)學(xué)等比數(shù)列教案設(shè)計(jì)大全三

  (一)教學(xué)目標(biāo)

  1`.知識(shí)與技能:理解等比數(shù)列的概念;掌握等比數(shù)列的通項(xiàng)公式;理解這種數(shù)列的模型應(yīng)用.

  2.過程與方法:通過豐富實(shí)例抽象出等比數(shù)列模型,經(jīng)歷由發(fā)現(xiàn)幾個(gè)具體數(shù)列的等比關(guān)系,歸納出等比數(shù)列的定義,通過與等差數(shù)列的通項(xiàng)公式的推導(dǎo)類比,探索等比數(shù)列的通項(xiàng)公式.

  3.情態(tài)與價(jià)值:培養(yǎng)學(xué)生從實(shí)際問題中抽象出數(shù)列模型的能力.

  (二)教學(xué)重、難點(diǎn)

  重點(diǎn):等比數(shù)列的定義和通項(xiàng)公式

  難點(diǎn):等比數(shù)列與指數(shù)函數(shù)的關(guān)系

  (三)學(xué)法與教學(xué)用具

  學(xué)法:首先由幾個(gè)具體實(shí)例抽象出等比數(shù)列的模型,從而歸納出等比數(shù)列的定義;與等差數(shù)列通項(xiàng)公式的推導(dǎo)類比,推導(dǎo)等比數(shù)列通項(xiàng)公式。

  教學(xué)用具:投影儀

  (四)教學(xué)設(shè)想

  [創(chuàng)設(shè)情景] 分析書上的四個(gè)例子,各寫出一個(gè)數(shù)列來表示

  [探索研究]

  四個(gè)數(shù)列分別是①1, 2, 4, 8, …

 ?、?, , , ,…

 ?、?,20 ,202 ,203 ,…

 ?、?0000×1.0198,10000×1.01982,10000×1.01983 10000×1.01984,10000×1.01985

  觀察四個(gè)數(shù)列:

  對(duì)于數(shù)列①,從第2項(xiàng)起,每一項(xiàng)與前一項(xiàng)的比都等于2

  對(duì)于數(shù)列②,從第2項(xiàng)起,每一項(xiàng)與前一項(xiàng)的比都等于

  對(duì)于數(shù)列③,從第2項(xiàng)起,每一項(xiàng)與前一項(xiàng)的比都等于20

  對(duì)于數(shù)列④,從第2項(xiàng)起,每一項(xiàng)與前一項(xiàng)的比都等于1.0198

  可知這些數(shù)列的共同特點(diǎn):從第2項(xiàng)起, 每一項(xiàng)與前一項(xiàng)的比都等于同一常數(shù).

  于是得到等比數(shù)列的定義:

  一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一常數(shù),那么這個(gè)數(shù)列叫做等比數(shù)列.這個(gè)常數(shù)叫做等比數(shù)列的公比,通常用字母q表示(q≠0)

  因此,以上四個(gè)數(shù)列均是等比數(shù)列,公比分別是2, ,20,1.0198.

  與等差中項(xiàng)類似,如果在a與b中間插入一個(gè)數(shù)G,使a,G,b成等比數(shù)列,那么G叫做a與b的等差中項(xiàng),這時(shí),a,b一定同號(hào),G2=ab

  在歸納等比數(shù)列公式時(shí),讓學(xué)生先回憶等差數(shù)列通項(xiàng)公式的歸納,類比這個(gè)過程,歸納如下:a2=a1q

  a3=a2q=(a1q)q=a1q2

  a4=a3q=(a1q2)q=a1q3

2020高中數(shù)學(xué)等比數(shù)列教案設(shè)計(jì)大全相關(guān)文章

1.高中數(shù)學(xué)集合教案設(shè)計(jì)

2.高考數(shù)學(xué)集合教案大全

3.高中數(shù)學(xué)必修5等比數(shù)列知識(shí)點(diǎn)梳理

4.高中數(shù)學(xué)無窮遞降等比數(shù)列求和公式

5.高一數(shù)學(xué)等比數(shù)列知識(shí)點(diǎn)總結(jié)

6.高中數(shù)學(xué)教學(xué)計(jì)劃

7.數(shù)學(xué)教學(xué)計(jì)劃5篇最新精選文章集錦

8.高中數(shù)學(xué)教師教學(xué)工作總結(jié)

9.2020高中教師述職總結(jié)報(bào)告模板【五篇】

10.怎么用excel自動(dòng)填充求等比數(shù)列

434667