高考數(shù)學(xué)復(fù)習(xí)資料整理
高考數(shù)學(xué)常考難點(diǎn)都有哪些?解三角形、數(shù)列、不等式是復(fù)習(xí)難點(diǎn)!希望你能認(rèn)真復(fù)習(xí)!接下來是小編為大家整理的高考數(shù)學(xué)復(fù)習(xí)資料整理,希望大家喜歡!
高考數(shù)學(xué)復(fù)習(xí)資料整理一
高考數(shù)學(xué)必修五??茧y點(diǎn)
第一章:解三角形
掌握正弦、余弦公式及其變式、推論、三角面積公式即可。
第二章:數(shù)列
等差、等比數(shù)列的通項(xiàng)公式、前n項(xiàng)及一些性質(zhì)常出現(xiàn)于填空、解答題中,這部分內(nèi)容學(xué)起來比較簡單,但考驗(yàn)對其推導(dǎo)、計(jì)算、活用的層面較深,因此要仔細(xì)??荚囶}中,通項(xiàng)公式、前n項(xiàng)和的內(nèi)容出現(xiàn)頻次較多,這類題看到后要帶有目的的去推導(dǎo)就沒問題了。
第三章:不等式
這一章一般用線性規(guī)劃的形式來考察學(xué)生,這種題通常是和實(shí)際問題聯(lián)系的,所以要會讀題,從題中找不等式,畫出線性規(guī)劃圖,然后再根據(jù)實(shí)際問題的限制要求來求最值。
高考數(shù)學(xué)復(fù)習(xí)資料整理二
高考數(shù)學(xué)易錯知識點(diǎn):數(shù)列
1.易錯點(diǎn)用錯基本公式致誤
錯因分析:等差數(shù)列的首項(xiàng)為a1、公差為d,則其通項(xiàng)公式an=a1+(n-1)d,前n項(xiàng)和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比數(shù)列的首項(xiàng)為a1、公比為q,則其通項(xiàng)公式an=a1pn-1,當(dāng)公比q≠1時,前n項(xiàng)和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),當(dāng)公比q=1時,前n項(xiàng)和公式Sn=na1。在數(shù)列的基礎(chǔ)性試題中,等差數(shù)列、等比數(shù)列的這幾個公式是解題的根本,用錯了公式,解題就失去了方向。
2.易錯點(diǎn)an,Sn關(guān)系不清致誤
錯因分析:在數(shù)列問題中,數(shù)列的通項(xiàng)an與其前n項(xiàng)和Sn之間存在關(guān)系:
這個關(guān)系是對任意數(shù)列都成立的,但要注意的是這個關(guān)系式是分段的,在n=1和n≥2時這個關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯的一個地方,在使用這個關(guān)系式時要牢牢記住其“分段”的特點(diǎn)。
當(dāng)題目中給出了數(shù)列{an}的an與Sn之間的關(guān)系時,這兩者之間可以進(jìn)行相互轉(zhuǎn)換,知道了an的具體表達(dá)式可以通過數(shù)列求和的方法求出Sn,知道了Sn可以求出an,解題時要注意體會這種轉(zhuǎn)換的相互性。
3.易錯點(diǎn)對等差、等比數(shù)列的性質(zhì)理解錯誤
錯因分析:等差數(shù)列的前n項(xiàng)和在公差不為0時是關(guān)于n的常數(shù)項(xiàng)為0的二次函數(shù)。
一般地,有結(jié)論“若數(shù)列{an}的前N項(xiàng)和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈N_是等差數(shù)列。
解決這類題目的一個基本出發(fā)點(diǎn)就是考慮問題要全面,把各種可能性都考慮進(jìn)去,認(rèn)為正確的命題給以證明,認(rèn)為不正確的命題舉出反例予以駁斥。在等比數(shù)列中公比等于-1時是一個很特殊的情況,在解決有關(guān)問題時要注意這個特殊情況。
4.易錯點(diǎn)數(shù)列中的最值錯誤
錯因分析:數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式都是關(guān)于正整數(shù)的函數(shù),要善于從函數(shù)的觀點(diǎn)認(rèn)識和理解數(shù)列問題。
但是考生很容易忽視n為正整數(shù)的特點(diǎn),或即使考慮了n為正整數(shù),但對于n取何值時,能夠取到最值求解出錯。在關(guān)于正整數(shù)n的二次函數(shù)中其取最值的點(diǎn)要根據(jù)正整數(shù)距離二次函數(shù)的對稱軸遠(yuǎn)近而定。
5.易錯點(diǎn)錯位相減求和時項(xiàng)數(shù)處理不當(dāng)致誤
錯因分析:錯位相減求和法的適用環(huán)境是:數(shù)列是由一個等差數(shù)列和一個等比數(shù)列對應(yīng)項(xiàng)的乘積所組成的,求其前n項(xiàng)和?;痉椒ㄊ窃O(shè)這個和式為Sn,在這個和式兩端同時乘以等比數(shù)列的公比得到另一個和式,這兩個和式錯一位相減,得到的和式要分三個部分:
(1)原來數(shù)列的第一項(xiàng);
(2)一個等比數(shù)列的前(n-1)項(xiàng)的和;
(3)原來數(shù)列的第n項(xiàng)乘以公比后在作差時出現(xiàn)的。在用錯位相減法求數(shù)列的和時一定要注意處理好這三個部分,否則就會出錯。
高考數(shù)學(xué)復(fù)習(xí)資料整理三
高考數(shù)學(xué)易錯知識點(diǎn):函數(shù)與導(dǎo)數(shù)
1.易錯點(diǎn)求函數(shù)定義域忽視細(xì)節(jié)致誤
錯因分析:函數(shù)的定義域是使函數(shù)有意義的自變量的取值范圍,因此要求定義域就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數(shù)的定義域。
在求一般函數(shù)定義域時要注意下面幾點(diǎn):
(1)分母不為0;
(2)偶次被開放式非負(fù);
(3)真數(shù)大于0;
(4)0的0次冪沒有意義。
函數(shù)的定義域是非空的數(shù)集,在解決函數(shù)定義域時不要忘記了這點(diǎn)。對于復(fù)合函數(shù),要注意外層函數(shù)的定義域是由內(nèi)層函數(shù)的值域決定的。
2.易錯點(diǎn)帶有絕對值的函數(shù)單調(diào)性判斷錯誤
錯因分析:帶有絕對值的函數(shù)實(shí)質(zhì)上就是分段函數(shù),對于分段函數(shù)的單調(diào)性,有兩種基本的判斷方法:
一是在各個段上根據(jù)函數(shù)的解析式所表示的函數(shù)的單調(diào)性求出單調(diào)區(qū)間,最后對各個段上的單調(diào)區(qū)間進(jìn)行整合;
二是畫出這個分段函數(shù)的圖象,結(jié)合函數(shù)圖象、性質(zhì)進(jìn)行直觀的判斷。研究函數(shù)問題離不開函數(shù)圖象,函數(shù)圖象反應(yīng)了函數(shù)的所有性質(zhì),在研究函數(shù)問題時要時時刻刻想到函數(shù)的圖象,學(xué)會從函數(shù)圖象上去分析問題,尋找解決問題的方案。
對于函數(shù)的幾個不同的單調(diào)遞增(減)區(qū)間,千萬記住不要使用并集,只要指明這幾個區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。
3.易錯點(diǎn)求函數(shù)奇偶性的常見錯誤
錯因分析:求函數(shù)奇偶性的常見錯誤有求錯函數(shù)定義域或是忽視函數(shù)定義域,對函數(shù)具有奇偶性的前提條件不清,對分段函數(shù)奇偶性判斷方法不當(dāng)?shù)取?/p>
判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個函數(shù)具備奇偶性的必要條件是這個函數(shù)的定義域區(qū)間關(guān)于原點(diǎn)對稱,如果不具備這個條件,函數(shù)一定是非奇非偶的函數(shù)。
在定義域區(qū)間關(guān)于原點(diǎn)對稱的前提下,再根據(jù)奇偶函數(shù)的定義進(jìn)行判斷,在用定義進(jìn)行判斷時要注意自變量在定義域區(qū)間內(nèi)的任意性。
4.易錯點(diǎn)抽象函數(shù)中推理不嚴(yán)密致誤
錯因分析:很多抽象函數(shù)問題都是以抽象出某一類函數(shù)的共同“特征”而設(shè)計(jì)出來的,在解決問題時,可以通過類比這類函數(shù)中一些具體函數(shù)的性質(zhì)去解決抽象函數(shù)的性質(zhì)。
解答抽象函數(shù)問題要注意特殊賦值法的應(yīng)用,通過特殊賦值可以找到函數(shù)的不變性質(zhì),這個不變性質(zhì)往往是進(jìn)一步解決問題的突破口。
抽象函數(shù)性質(zhì)的證明是一種代數(shù)推理,和幾何推理證明一樣,要注意推理的嚴(yán)謹(jǐn)性,每一步推理都要有充分的條件,不可漏掉一些條件,更不要臆造條件,推理過程要層次分明,書寫規(guī)范。
5.易錯點(diǎn)函數(shù)零點(diǎn)定理使用不當(dāng)致誤
錯因分析:如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個c也是方程f(c)=0的根,這個結(jié)論我們一般稱之為函數(shù)的零點(diǎn)定理。
函數(shù)的零點(diǎn)有“變號零點(diǎn)”和“不變號零點(diǎn)”,對于“不變號零點(diǎn)”,函數(shù)的零點(diǎn)定理是“無能為力”的,在解決函數(shù)的零點(diǎn)時要注意這個問題。
6.易錯點(diǎn)混淆兩類切線致誤
錯因分析:曲線上一點(diǎn)處的切線是指以該點(diǎn)為切點(diǎn)的曲線的切線,這樣的切線只有一條;曲線的過一個點(diǎn)的切線是指過這個點(diǎn)的曲線的所有切線,這個點(diǎn)如果在曲線上當(dāng)然包括曲線在該點(diǎn)處的切線,曲線的過一個點(diǎn)的切線可能不止一條。因此求解曲線的切線問題時,首先要區(qū)分是什么類型的切線。
7.易錯點(diǎn)混淆導(dǎo)數(shù)與單調(diào)性的關(guān)系致誤
錯因分析:對于一個函數(shù)在某個區(qū)間上是增函數(shù),如果認(rèn)為函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大于0,就會出錯。
研究函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的關(guān)系時一定要注意:一個函數(shù)的導(dǎo)函數(shù)在某個區(qū)間上單調(diào)遞增(減)的充要條件是這個函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大(小)于等于0,且導(dǎo)函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。
8.易錯點(diǎn)導(dǎo)數(shù)與極值關(guān)系不清致誤
錯因分析:在使用導(dǎo)數(shù)求函數(shù)極值時,很容易出現(xiàn)的錯誤就是求出使導(dǎo)函數(shù)等于0的點(diǎn),而沒有對這些點(diǎn)左右兩側(cè)導(dǎo)函數(shù)的符號進(jìn)行判斷,誤以為使導(dǎo)函數(shù)等于0的點(diǎn)就是函數(shù)的極值點(diǎn)。
出現(xiàn)這些錯誤的原因是對導(dǎo)數(shù)與極值關(guān)系不清??蓪?dǎo)函數(shù)在一個點(diǎn)處的導(dǎo)函數(shù)值為零只是這個函數(shù)在此點(diǎn)處取到極值的必要條件,在此提醒廣大考生在使用導(dǎo)數(shù)求函數(shù)極值時一定要注意對極值點(diǎn)進(jìn)行檢驗(yàn)。
高考數(shù)學(xué)復(fù)習(xí)資料整理四
高考數(shù)學(xué)必考知識點(diǎn)歸納必修一:
1、集合與函數(shù)的概念(這部分知識抽象,較難理解)2、基本的初等函數(shù)(指數(shù)函數(shù)、對數(shù)函數(shù))3、函數(shù)的性質(zhì)及應(yīng)用(比較抽象,較難理解)
高考數(shù)學(xué)必考知識點(diǎn)歸納必修二:
1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問題,包括線面角和面面角。
這部分知識是高一學(xué)生的難點(diǎn),比如:一個角實(shí)際上是一個銳角,但是在圖中顯示的鈍角等等一些問題,需要學(xué)生的立體意識較強(qiáng)。這部分知識高考占22---27分
2、直線方程:高考時不單獨(dú)命題,易和圓錐曲線結(jié)合命題
3、圓方程
高考數(shù)學(xué)必考知識點(diǎn)歸納必修三:
1、算法初步:高考必考內(nèi)容,5分(選擇或填空)2、統(tǒng)計(jì):3、概率:高考必考內(nèi)容,09年理科占到15分,文科數(shù)學(xué)占到5分。
高考數(shù)學(xué)必考知識點(diǎn)歸納必修四:
1、三角函數(shù):(圖像、性質(zhì)、高中重難點(diǎn),)必考大題:15---20分,并且經(jīng)常和其他函數(shù)混合起來考查。
2、平面向量:高考不單獨(dú)命題,易和三角函數(shù)、圓錐曲線結(jié)合命題。09年理科占到5分,文科占到13分。
高考數(shù)學(xué)必考知識點(diǎn)歸納必修五:
1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數(shù)學(xué)占到13分左右2、數(shù)列:高考必考,17---22分3、不等式:(線性規(guī)劃,聽課時易理解,但做題較復(fù)雜,應(yīng)掌握技巧。高考必考5分)不等式不單獨(dú)命題,一般和函數(shù)結(jié)合求最值、解集。
高考數(shù)學(xué)必考知識點(diǎn)歸納文科選修:
選修1--1:重點(diǎn):高考占30分
1、邏輯用語:一般不考,若考也是和集合放一塊考2、圓錐曲線:3、導(dǎo)數(shù)、導(dǎo)數(shù)的應(yīng)用(高考必考)
選修1--2:
1、統(tǒng)計(jì):2、推理證明:一般不考,若考會是填空題3、復(fù)數(shù):(新課標(biāo)比老課本難的多,高考必考內(nèi)容)。
高考數(shù)學(xué)必考知識點(diǎn)歸納理科選修:
選修2--1:1、邏輯用語2、圓錐曲線3、空間向量:(利用空間向量可以把立體幾何做題簡便化)選修2--2:1、導(dǎo)數(shù)與微積分2、推理證明:一般不考3、復(fù)數(shù)
選修2--3:1、計(jì)數(shù)原理:(排列組合、二項(xiàng)式定理)掌握這部分知識點(diǎn)需要大量做題找規(guī)律,無技巧。高考必考,10分2、隨機(jī)變量及其分布:不單獨(dú)命題3、統(tǒng)計(jì):
高考的知識板塊
集合與簡單邏輯:5分或不考
函數(shù):高考60分:①、指數(shù)函數(shù)②對數(shù)函數(shù)③二次函數(shù)④三次函數(shù)⑤三角函數(shù)⑥抽象函數(shù)(無函數(shù)表達(dá)式,不易理解,難點(diǎn))
平面向量與解三角形
立體幾何:22分左右
不等式:(線性規(guī)則)5分必考
數(shù)列:17分(一道大題+一道選擇或填空)易和函數(shù)結(jié)合命題
平面解析幾何:(30分左右)
計(jì)算原理:10分左右
概率統(tǒng)計(jì):12分----17分
復(fù)數(shù):5分
高考數(shù)學(xué)復(fù)習(xí)資料整理相關(guān)文章:
1.高考數(shù)學(xué)總復(fù)習(xí)精品資料
2.高考數(shù)學(xué)復(fù)習(xí)寶典:是知識整理而不是知識回顧
5.高考數(shù)學(xué)一輪復(fù)習(xí)七大知識點(diǎn)
6.2016年高考數(shù)學(xué)復(fù)習(xí)資料
7.高三數(shù)學(xué)各階段復(fù)習(xí)要點(diǎn)總結(jié)及高分技巧分享
8.高考數(shù)學(xué)復(fù)習(xí)方法及部分必考點(diǎn)