国产成人v爽在线免播放观看,日韩欧美色,久久99国产精品久久99软件,亚洲综合色网站,国产欧美日韩中文久久,色99在线,亚洲伦理一区二区

學習啦>學習方法>高中學習方法>高三學習方法>高三數(shù)學>

5篇高三數(shù)學教案總結

時間: 淑娟0 分享

純數(shù)學這門科學再其現(xiàn)代發(fā)展階段,可以說是人類精神之最具獨創(chuàng)性的創(chuàng)造。今天小編在這給大家整理了高三數(shù)學教案大全,接下來隨著小編一起來看看吧!

高三數(shù)學教案()

一、指導思想

今年是我省使用新教材的第八年,即進入了新課程標準下高考的第六年。高三數(shù)學教學要以《數(shù)學課程標準》為依據(jù),全面貫徹教育方針,積極實施素質教育。 提高學生的學習能力仍是我們的奮斗目標。 近年來的高考數(shù)學試題逐步做到科學化、規(guī)范化,堅持了穩(wěn)中求改、穩(wěn)中創(chuàng)新 的原則。 高考試題不但堅持了考查全面,比例適當,布局合理的特點,也突出體現(xiàn) 了變知識立意為能力立意這一舉措。 更加注重考查考生進入高校學習所需的基本素 養(yǎng),這些問題應引起我們在教學中的關注和重視。

二、 注意事項

1、 高度重視基礎知識,基本技能和基本方法的復習。

“基礎知識,基本技能和基本方法”是高考復習的重點。我們希望在復習課中 要認真落實 “基礎練習”,并注意蘊涵在基礎知識中的能力因素,注意基本問題中 的能力培養(yǎng)。 特別是要學會把基礎知識放在新情景中去分析,應用。

2、 高中的‘重點知識’在復習中要保持較大的比重和必要的深度。

原來的重點內容函數(shù)、不等式、數(shù)列、向量、立體幾何,平面三角及解析幾何 中的綜合問題等。 在教學中,要避免重復及簡單的操練。新增的內容:算法、概率等 內容在復習時也應引起我們的足夠重視 。總之高三的數(shù)學復習課要以培養(yǎng)邏輯思維 能力為核心,加強運算能力為主體進行復習。

3、 重視‘通性、通法’的落實。

要把復習的重點放在教材中典型例題、習題上;放在體現(xiàn)通性、通法的例題、 習題上;放在各部分知識網(wǎng)絡之間的內在聯(lián)系上抓好課堂教學質量,定出實施方法 和評價方案。

4、 認真學習《__省2015 年高考考試說明》,研究近三年的高考試題,提高復習課 的效率。

《考試說明》是命題的依據(jù),復習的依據(jù)。 高考試題是《考試說明》的具體體 現(xiàn)。 只有研究近年來的考試試題,才能加深對《考試說明》的理解,找到我們與命 題專家在認識《考試說明》上的差距。 并力求在二輪復習中縮小這一差距,更好地 指導我們的復習。

5、 滲透數(shù)學思想方法,培養(yǎng)數(shù)學學科能力。

《考試說明》明確指出要考查數(shù)學思想方法, 要加強學科能力的考查。 我們在 復習中要加強數(shù)學思想方法的復習, 如轉化與化歸的思想、函數(shù)與方程的思想、分 類討論的思想、數(shù)形結合的思想。 以及配方法、換元法、待定系數(shù)法、反證法、數(shù) 學歸納法、解析法等數(shù)學基本方法都要有意識地根據(jù)學生學習實際予以復習及落實。

6、 二輪復習課中注意新的目標定位。

① 培養(yǎng)學生搜集和處理信息的能力;

② 激發(fā)學生的創(chuàng)新精神;

③ 培養(yǎng)學生在學習過程中的的合作精神;

④ 激活顯示各科知識的儲存,嘗試相關知識的靈活應用及綜合應用。

三、知識和能力要求

1、知識要求 對知識的要求由低到高分為三個層次,依次是知道和感知、理解和掌握、靈活 和綜合運用,且高一級的層次要求包括低一級的層次要求。

(1)感知和了解:要求對所學知識的含義有初步的了解和感性的認識或初步的 理解,知道這一知識內容是什么,并能在有關的問題中識別、模仿、描述它。

(2)理解和掌握:要求對所學知識內容有較為深刻的理論認識,能夠準確地刻 畫或解釋、舉例說明、簡單的變形、推導或證明、抽象歸納,并能利用相關知識解 決有關問題。

(3)靈活和綜合運用:要求系統(tǒng)地掌握知識的內在聯(lián)系,能靈活運用所學知識 分析和解決較為復雜的或綜合性的數(shù)學現(xiàn)象與數(shù)學問題。

2、能力要求

能力主要指運算求解能力、數(shù)據(jù)處理能力、空間想象能力、抽象概括能力、推 理論證能力以及實踐能力和創(chuàng)新意識。

(1)運算求解能力:會根據(jù)法則、公式進行正確運算、變形;能根據(jù)問題的條件, 尋找與設計合理、簡捷運算途徑。

(2)數(shù)據(jù)處理能力:會收集、整理、分析數(shù)據(jù),能抽取對研究問題有用的信息, 并作出正確的判斷;能根據(jù)要求對數(shù)據(jù)進行估計和近似計算。

(3)空間想象能力:會畫簡單的幾何圖形;能準確地分析圖形中有關量的相互關 系;會運用圖形與圖表等手段形象地揭示問題的本質。

(4)抽象概括能力:能從具體、生動的實例中,發(fā)現(xiàn)研究對象的本質;能從給定 的大量信息材料中,概括出一些結論,并能應用于解決問題或作出新的判斷。

(5)推理論證能力:會根據(jù)已知的事實和已獲得的正確數(shù)學命題來論證某一數(shù)學 命題真實性。

(6)應用意識和實踐能力:能夠對問題所提供的信息資料進行歸納、整理和分類, 將實際問題抽象為數(shù)學問題,建立數(shù)學模型;能應用相關的數(shù)學方法解決問題。

(7)創(chuàng)新意識和能力:能夠獨立思考,靈活和綜合地運用所學數(shù)學的知識、思想 和方法,提出問題、分析問題和解決問題。

四、學生情況分析:

1 基礎知識掌握情況分析: 高三一部11、12 班大部分學生基礎知識掌握情況較差,計算能力不強,一些基 本的題型都不能自如的解決。通過一段的一輪復習,大部分學生對復習過的公式, 定理、法則都有了一定的認識與理解?;灸軌蛴涀≡撚浌?,但對于沒有復習的 部分,還是有一定的欠缺。表現(xiàn)為一些基本的公式、法則、定理等都忘掉了。

2 學習態(tài)度情況分析: 有相當一部分同學學習態(tài)度極為不端正,主要表現(xiàn)為:

(1)缺乏上進心,有相當一部分同學信心不足,沒有必勝的勇氣和信心。

(2)不能按時完成作業(yè),有抄襲或只是解決一些簡單的問題而缺乏深入研究難題的 習慣。

(3)缺乏自主復習的習慣,大部分同學只是在等老師引導進行一輪復習,而不能夠 自己動手搞好提前復習,表現(xiàn)在考試(或作業(yè))中遇到了沒有復習的試題時,顯得 毫無辦法。

(4)缺乏動手能力及動手習慣,對復習過的知識不能及時的進行鞏固、練習,所發(fā) 的講義、練習卷等不能夠及時、認真填寫,導致對復習過的知識掌握的熟練程度不 夠。

3 復習方式、方法分析:

(1)缺少科學有效的復習方法,有相當一部分同學沒有改錯本,在一些愛錯的地方 不斷的犯錯。不能夠做到“吃一塹、長一智”。

(2)一些同學不會聽課,不會記筆記。上課時,整堂忙于記筆記,而忽視聽講,不 注意聽思路的分析及探索過程。

(3)不注意歸納知識,復習到的只是一些零散的知識,而不是有效的知識、方法體 系,顯得很笨。

(4)不注意經(jīng)常回顧,對復習過的知識置之千里,而不去經(jīng)常鞏固、練習。時間長 了,又“生銹”了。

五、復習對策教學措施

1、盡快幫助學生樹立信心!

2、教給學生科學的復習習慣和復習方法。

3、堅持基礎知識訓練。

4、對高考要考察的六類解答問題,一定要認真做好專題復習和訓練; 每周訓練兩套模擬試題;每天做好專題訓練的配套作業(yè)。

六、教學參考進度

1、 2 月10 日至4 月20 日為第二輪復習階段。這一輪的復習方式是綜合訓練與專 題總結并舉,在每周兩次綜合練習的基礎上穿插專題總結;

2、 4 月21 日至5 月20 日為第三輪復習階段。這一階段主要以綜合訓練為主。每 周至少做三套綜合練習題,題目來源為山東省各地市的一、二輪模擬題。

3、 5 月21 日至6 月7 日為回扣課本階段。這一階段主要根據(jù)第三輪綜合練習中 的問題回顧課本,以達到進一步落實升華的目的。

七、二輪復習資料編寫專題內容及分工安排

(一)專題分工 專題一:集合與簡單邏輯用語------鄧光珍 專題二:《函數(shù)與導數(shù)》---張福平 專題三:《三角函數(shù)及解三角形》----王富香 專題四:《數(shù)列》----姜守芹 專題五:《立體幾何》----高吉泉 專題六:《解析幾何(穿插向量)》----趙來偉 專題七:《概率與統(tǒng)計》----梁建國 專題八:《導數(shù)與積分》----梁建國 專題九:《思想方法與選擇、填空題的解法》---高吉泉

(二)編寫專題的基本要求:

1、專題以高考命題趨勢、考點透視、知識框架題目、例題、專項訓練的形式出 現(xiàn),要精選題目,要有一定的綜合性,難度要達到高考的要求,不能降低要求。

2、每個專題約4 天時間完成(包括過關測試),采用講練結合,以練為主。

3、各專題的題量要根據(jù)本專題的地位及難易程度,既要有小題,也要有大題。

4、每個專題在復習過程中要讓學生理清本專題的常考考點、高考地位,高考分 值、主要題型、高考熱點、重點等。 在第二輪復習的強化訓練中,根據(jù)學生的實際情況,以強化訓練為主。

在強化訓 練中,命題一定要針對學生的實際情況,有針對性地命題,難度要適易,尤其中低 檔強化訓練題為主,不要過于拔高要求,各層次的訓練都要狠抓基礎,針對高考的 方向,切實做到通過強化訓練,使學生的數(shù)學成績能得到穩(wěn)步提高。在強化訓練的 試卷講評中,要提前探討和思考,讓學生有回顧的余地,切忌發(fā)下試卷就講評,且 要有針對性的講解,老師備課一定要備學生,盡可能一節(jié)課的時間講評完試卷,每 次的訓練中要總結得與失,出現(xiàn)的問題要及時得到解決,問題較多的還要多次重復 考及多次訓練。

八、本學期備課內容及進度: 周次 、內容 、目的、要求 重點、考點熱點

1 市第二次統(tǒng)考 試卷講評

2 專題一集合與簡單邏輯用語 知識框架、雙基 集合運算和充分 必要條件

3 專題二函數(shù)與導數(shù) 知識框架、雙基 函數(shù)不等式綜合 應用

4 第三專題角函數(shù)及解三角形 知識網(wǎng)絡、雙基 數(shù)列綜合應用

5 第四專題數(shù)列 函數(shù)創(chuàng)新探究 函數(shù)創(chuàng)新綜合

6 專題五立體幾何 回扣雙基、知識框架 立體幾何綜合 應用

7 專題六解析幾何 知識框架、回扣雙基 解析幾何綜合應 用

8 市三次統(tǒng)考 試卷講評

9 第七專題概率與統(tǒng)計 知識框架、雙基 概率統(tǒng)計綜合

10 第八專題導數(shù)應用和積分 雙基、知識要點 導數(shù)綜合應用

11 第九專題思想方法和選、填題解 法 回扣基本方法和思想 數(shù)形結合、分類 討論、化歸轉化、 函數(shù)與方程

12 市四次統(tǒng)考 試卷講評

13 考前模擬訓練 綜合訓練、應試能力和技巧 重點、熱點講評

14 回扣課本、反饋雙基 查缺補漏,回歸課本

15 回扣課本、反饋雙基 回歸課本,考試方法

16 高考

高三數(shù)學教案()

一、教學內容分析

本節(jié)內容是學生在學習了乘法原理、排列、排列數(shù)公式和加法原理以后的知識,學生已經(jīng)掌握了排列問題,并且對順序與排列的關系已經(jīng)有了一個比較清晰的認識.因此關鍵是排列與組合的區(qū)別在于問題是否與順序有關.與順序有關的是排列問題,與順序無關是組合問題,順序對排列、組合問題的求解特別重要.排列與組合的區(qū)別,從定義上來說是簡單的,但在具體求解過程中學生往往感到困惑,分不清到底與順序有無關系,指導學生根據(jù)生活經(jīng)驗和問題的內涵領悟其中體現(xiàn)出來的順序.教的秘訣在于度,學的真諦在于悟,只有學生真正理解了,才能舉一反三、融會貫通.

二、教學目標設計

1.理解組合的意義,掌握組合數(shù)的計算公式;

2.能正確認識組合與排列的聯(lián)系與區(qū)別

3.通過練習與訓練體驗并初步掌握組合數(shù)的計算公式

三、教學重點及難點

組合概念的理解和組合數(shù)公式;組合與排列的區(qū)別.

四、教學用具準備

多媒體設備

五、教學流程設計



六、教學過程設計

一、 復習引入

1.復習

我們在前幾節(jié)中學習了排列、排列數(shù)以及排列數(shù)公式

定 義

特 點

相同排列

公 式

排 列

 以上由學生口答.

2.引入

那么請問:平面上有7個點,問以這7點中任何兩個為端點,構成有向線段有幾條?

這是一個排列問題

若改為:構成的線段有幾條?則為 ,

其實亦可用另一種方法解決,這就是組合.

二、學習新課

探究性質

1. 組合定義: P16

一般地,從個不同元素中取出個元素并成一組,叫做從個不同元素中取出個元素的一個組合.

【說明】:⑴不同元素; ⑵“只取不排”——無序性;

⑶相同組合:元素相同.

2.組合數(shù)定義:

從個不同元素中取出個元素的所有組合的個數(shù),叫做從個不同元素中取出個元素的組合數(shù).用符號表示.

如:引入中的例子可表示為

== 這是為什么呢?

因為 構成有向線段的問題可分成2步來完成:

第一步,先從7個點中選2個點出來,共有種選法;

第二步,將選出的2個點做一個排列,有種次序;

根據(jù)乘法原理,共有·= 所以

·判斷何為排列、組合問題: 利用書本P16~P17例題請學生判斷

·這個公式叫組合數(shù)公式

3.組合數(shù)公式:

如= =

用計算器求

可發(fā)現(xiàn)= =

由此猜想:

用實際例子說明:比如要從50人中挑選4個出來參加迎春長跑的選擇方案有,就相當于挑46個人不參加長跑的選擇方案一樣.“取法”與“剩法”是“一 一對應”的.

證明:∵

又 ,∴

當m=n時,

此性質作用:當時,計算可變?yōu)橛嬎?,能夠使運算簡化.

4. 組合數(shù)性質:

1、

2、=

可解釋為:從這n 1個不同元素中取出m個元素的組合數(shù)是,這些組合可以分為兩類:一類含有元素,一類不含有.含有的組合是從這n個元素中取出m (1個元素與組成的,共有個;不含有的組合是從這n個元素中取出m個元素組成的,共有個.根據(jù)加法原理,可以得到組合數(shù)的另一個性質.在這里,主要體現(xiàn)從特殊到一般的歸納思想,“含與不含其元素”的分類思想.

證明:

得證.

【說明】1( 公式特征:下標相同而上標差1的兩個組合數(shù)之和,等于下標比原下標多1而上標與高的相同的一個組合數(shù).

2( 此性質的作用:恒等變形,簡化運算.在今后學習“二項式定理”時,我們會看到它的主要應用.

2.例題分析

例1、(1),求_

(2)

(3)

略解:(1)

(2)

(3)

例2、應用題:

有15本不同的書,其中6本是數(shù)學書,問:

分給甲4本,且都不是數(shù)學書;

略解:(1)

3.問題拓展

例3.題設同例2:

(2)平均分給3人;

(3)若平均分為3份;

(4)甲分2本,乙分7本,丙分6本;

(5)1人2本,1人7本,1人6本.

略解:(2) (3)

(4) (5)

三、課堂小結

指導學生根據(jù)生活經(jīng)驗和問題的內涵領悟其中體現(xiàn)出來的順序.教的秘訣在于度,學的真諦在于悟,只有學生真正理解了,才能舉一反三、融會貫通.

能列舉出某種方法時,讓學生通過交換元素位置的辦法加以鑒別.

學生易于辨別組合、全排列問題,而排列問題就是先組合后全排列.在求解排列、組合問題時,可引導學生找出兩定義的關系后,按以下兩步思考:首先要考慮如何選出符合題意要求的元素來,選出元素后再去考慮是否要對元素進行排隊,即第一步僅從組合的角度考慮,第二步則考慮元素是否需全排列,如果不需要,是組合問題;否則是排列問題.

排列、組合問題大都來源于同學們生活和學習中所熟悉的情景,解題思路通常是依據(jù)具體做事的過程,用數(shù)學的原理和語言加以表述.也可以說解排列、組合題就是從生活經(jīng)驗、知識經(jīng)驗、具體情景的出發(fā),正確領會問題的實質,抽象出“按部就班”的處理問題的過程.據(jù)觀察,有些同學之所以學習中感到抽象,不知如何思考,并不是因為數(shù)學知識跟不上,而是因為平時做事、考慮問題就缺乏條理性,或解題思路是自己主觀想象的做法(很可能是有悖于常理或常規(guī)的做法).要解決這個問題,需要師生一道在分析問題時要根據(jù)實際情況,怎么做事就怎么分析,若能借助適當?shù)墓ぞ撸M做事的過程,則更能說明問題.久而久之,學生的邏輯思維能力將會大大提高.

四、作業(yè)布置

(略)

七、教學設計說明

在學習過程中,從排列問題引入,隨即自然地過渡到組合問題.由此讓學生對于排列與組合兩者的異同有深刻理解,并能自如地進行判斷.

本節(jié)課在教學技術上通過多媒體課件大大縮短了教師板書抄題的時間,讓學生能夠更加連貫的思考以及探索問題.

在例題的設計上從最基本的組合數(shù)公式的利用,到簡單的應用題,再到組合中較難的分組分配以及平均不平均分配問題的訓練,由淺入深,層層遞進,以積極發(fā)揮課堂教學的基礎型和研究型功能,培養(yǎng)學生的基礎性學力和發(fā)展性學力.

在課堂教學中教師遵循“以學生為主體”的思想,鼓勵學生善于觀察和發(fā)現(xiàn);鼓勵學生積極思考和探究;鼓勵學生大膽猜想,努力營造一個民主和諧、平等交流的課堂氛圍,采取對話式教學,調動學生學習的積極性,激發(fā)學生學習的熱情,使學生開闊思維空間,讓學生積極參與教學活動,提高學生的數(shù)學思維能力.

高三數(shù)學教案()

一 教材分析

本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內容,與初中學習的三角形的邊和角的基本關系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當中也時??家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。

根據(jù)上述教材內容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:

認知目標:在創(chuàng)設的問題情境中,引導學生發(fā)現(xiàn)正弦定理的內容,推證正弦定理及簡單運用正弦定理與三角形的內角和定理解斜三角形的兩類問題。

能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養(yǎng)學生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結合的工具,將幾何問題轉化為代數(shù)問題。

情感目標:面向全體學生,創(chuàng)造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,調動學生的主動性和積極性,給學生成功的體驗,激發(fā)學生學習的興趣。

教學重點:正弦定理的內容,正弦定理的證明及基本應用。

教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。

二 教法

根據(jù)教材的內容和編排的特點,為是更有效地突出重點,空破難點,以學業(yè)生的發(fā)展為本,遵照學生的認識規(guī)律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想, 采用探究式課堂教學模式,即在教學過程中,在教師的啟發(fā)引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點的手段:抓住學生情感的興奮點,激發(fā)他們的興趣,鼓勵學生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給以適當?shù)奶崾竞椭笇АM黄齐y點的方法:抓住學生的能力線聯(lián)系方法與技能使學生較易證明正弦定理,另外通過例題和練習來突破難點

三 學法:

指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現(xiàn)學生的主體地位,增強學生由特殊到一般的數(shù)學思維能力,形成了實事求是的科學態(tài)度,增強了鍥而不舍的求學精神。

四 教學過程

第一:創(chuàng)設情景,大概用2分鐘

第二:實踐探究,形成概念,大約用25分鐘

第三:應用概念,拓展反思,大約用13分鐘

(一)創(chuàng)設情境,布疑激趣

“興趣是的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。

(二)探尋特例,提出猜想

1.激發(fā)學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發(fā)現(xiàn)正弦定理。

2.那結論對任意三角形都適用嗎?指導學生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。

3.讓學生總結實驗結果,得出猜想:

在三角形中,角與所對的邊滿足關系

這為下一步證明樹立信心,不斷的使學生對結論的認識從感性逐步上升到理性。

(三)邏輯推理,證明猜想

1.強調將猜想轉化為定理,需要嚴格的理論證明。

2.鼓勵學生通過作高轉化為熟悉的直角三角形進行證明。

3.提示學生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結合的數(shù)學思想。

4.思考是否還有其他的方法來證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來證明

(四)歸納總結,簡單應用

1.讓學生用文字敘述正弦定理,引導學生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學美的享受。

2.正弦定理的內容,討論可以解決哪幾類有關三角形的問題。

3.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發(fā)學生知識后用于實際的價值觀。

(五)講解例題,鞏固定理

1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

例1簡單,結果為解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學生。

(六)課堂練習,提高鞏固

1.在△ABC中,已知下列條件,解三角形.

(1)A=45°,C=30°,c=10cm

(2)A=60°,B=45°,c=20cm

2. 在△ABC中,已知下列條件,解三角形.

(1)a=20cm,b=11cm,B=30°

(2)c=54cm,b=39cm,C=115°

學生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。

(七)小結反思,提高認識

通過以上的研究過程,同學們主要學到了那些知識和方法?你對此有何體會?

1.用向量證明了正弦定理,體現(xiàn)了數(shù)形結合的數(shù)學思想。

2.它表述了三角形的邊與對角的正弦值的關系。

3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類討論的思想。

(從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調研究性學習方法,注重學生的主體地位,調動學生積極性,使數(shù)學教學成為數(shù)學活動的教學。)

(八)任務后延,自主探究

如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內容,余弦定理。布置作業(yè),預習下一節(jié)內容。

五 板書設計

板書設計可以讓學生一目了然本節(jié)課所學的知識,證明正弦定理的方法以及正弦定理可以解決的兩類問題。

高三數(shù)學教案()

組合

教學目標

(1)使學生正確理解組合的意義,正確區(qū)分排列、組合問題;

(2)使學生掌握組合數(shù)的計算公式、組合數(shù)的性質用組合數(shù)與排列數(shù)之間的關系;

(3)通過學習組合知識,讓學生掌握類比的學習方法,并提高學生分析問題和解決問題的能力;

(4)通過對排列、組合問題求解與剖析,培養(yǎng)學生學習興趣和思維深刻性,學生具有嚴謹?shù)膶W習態(tài)度。

教學建議

一、知識結構

二、重點難點分析

本小節(jié)的重點是組合的定義、組合數(shù)及組合數(shù)的公式,組合數(shù)的性質。難點是解組合的應用題。突破重點、難點的關鍵是對加法原理與乘法原理的掌握和應用,并將這兩個原理的基本思想貫穿在解決組合應用題當中。

組合與組合數(shù),也有上面類似的關系。從n個不同元素中任取m(m≤n)個元素并成一組,叫做從n個不同元素中任取m個元素的一個組合。所有這些不同的組合的個數(shù)叫做組合數(shù)。從集合的角度看,從n個元素的有限集中取出m個組成的一個集合(無序集),相當于一個組合,而這種集合的個數(shù),就是相應的組合數(shù)。

解排列組合應用題時主要應抓住是排列問題還是組合問題,其次要搞清需要分類,還是需要分步.切記:排組分清(有序排列、無序組合),加乘明確(分類為加、分步為乘).

三、教法設計

1.對于基礎較好的學生,建議把排列與組合的概念進行對比的進行學習,這樣有利于搞請這兩組概念的區(qū)別與聯(lián)系.

2.學生與老師可以合編一些排列組合問題,如“45人中選出5人當班干部有多少種選法?”與“45人中選出5人分別擔任班長、副班長、體委、學委、生委有多少種選法?”這是兩個相近問題,同學們會根據(jù)自己身邊的實際可以編出各種各樣的具有特色的問題,教師要引導學生辨認哪個是排列問題,哪個是組合問題.這樣既調動了學生學習的積極性,又在編題辨題中澄清了概念.

為了理解排列與組合的概念,建議大家學會畫排列與組合的樹圖.如,從a,b,c,d 4個元素中取出3個元素的排列樹圖與組合樹圖分別為:

排列樹圖      

由排列樹圖得到,從a,b,c,d 取出3個元素的所有排列有24個,它們分別是:abc,abd,acb.abd,adc,adb,bac,bad,bca,bcd,bda,bdc.……dca,dcb.

組合樹圖

由組合樹圖可得,從a,b,c,d中取出3個元素的組合有4個,它們是(abc),(abd),(acd),(bcd).

從以上兩組樹圖清楚的告訴我們,排列樹圖是對稱的,組合圖式不是對稱的,之所以排列樹圖具有對稱性,是因為對于a,b,c,d四個字母哪一個都有在第一位的機會,哪一個都有在第二位的機會,哪一個都有在第三位的機會,而組合只考慮字母不考慮順序,為實現(xiàn)無順序的要求,我們可以限定a,b,c,d的順序是從前至后,固定了死順序等于無順序,這樣組合就有了自己的樹圖.

學會畫組合樹圖,不僅有利于理解排列與組合的概念,還有助于推導組合數(shù)的計算公式.

3.排列組合的應用問題,教師應從簡單問題問題入手,逐步到有一個附加條件的單純排列問題或組合問題,最后在設及排列與組合的綜合問題.

對于每一道題目,教師必須先讓學生獨立思考,在進行全班討論,對于學生的每一種解法,教師要先讓學生判斷正誤,在給予點播.對于排列、組合應用問題的解決我們提倡一題多解,這樣有利于培養(yǎng)學生的分析問題解決問題的能力,在學生的多種解法基礎上教師要引導學生選擇方案,總結解題規(guī)律.對于學生解題中的常見錯誤,教師一定要講明道理,認真分析錯誤原因,使學生在是非的判斷得以提高.

4.兩個性質定理教學時,對定理1,可以用下例來說明:從4個不同的元素a,b,c,d里每次取出3個元素的組合及每次取出1個元素的組合分別是

這就說明從4個不同的元素里每次取出3個元素的組合與從4個元素里每次取出1個元素的組合是—一對應的.

對定理2,可啟發(fā)學生從下面問題的討論得出.從n個不同元素 , ,…, 里每次取出m個不同的元素( ),問:(1)可以組成多少個組合;(2)在這些組合里,有多少個是不含有 的; ?。?)在這些組合里,有多少個是含有 的;(4)從上面的結果,可以得出一個怎樣的公式.在此基礎上引出定理2.

對于 ,和 一樣,是一種規(guī)定.而學生常常誤以為是推算出來的,因此,教學時要講清楚.

教學設計示例

教學目標

(1)使學生正確理解組合的意義,正確區(qū)分排列、組合問題;

(2)使學生掌握組合數(shù)的計算公式;

(3)通過學習組合知識,讓學生掌握類比的學習方法,并提高學生分析問題和解決問題的能力;

教學重點難點

重點是組合的定義、組合數(shù)及組合數(shù)的公式;

難點是解組合的應用題.

教學過程設計

(-)導入新課

(教師活動)提出下列思考問題,打出字幕.

[字幕]一條鐵路線上有6個火車站,(1)需準備多少種不同的普通客車票?(2)有多少種不同票價的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?

(學生活動)討論并回答.

答案提示:(1)排列;(2)組合.

[評述]問題(1)是從6個火車站中任選兩個,并按一定的順序排列,要求出排法的種數(shù),屬于排列問題;(2)是從6個火車站中任選兩個并成一組,兩站無順序關系,要求出不同的組數(shù),屬于組合問題.這節(jié)課著重研究組合問題.

設計意圖:組合與排列所研究的問題幾乎是平行的.上面設計的問題目的是從排列知識中發(fā)現(xiàn)并提出新的問題.

(二)新課講授

[提出問題 創(chuàng)設情境]

(教師活動)指導學生帶著問題閱讀課文.

[字幕]1.排列的定義是什么?

2.舉例說明一個組合是什么?

3.一個組合與一個排列有何區(qū)別?

(學生活動)閱讀回答.

(教師活動)對照課文,逐一評析.

設計意圖:激活學生的思維,使其將所學的知識遷移過渡,并盡快適應新的環(huán)境.

【歸納概括 建立新知】

(教師活動)承接上述問題的回答,展示下面知識.

[字幕]模型:從 個不同元素中取出 個元素并成一組,叫做從 個不同元素中取出 個元素的一個組合.如前面思考題:6個火車站中甲站→乙站和乙站→甲站是票價相同的車票,是從6個元素中取出2個元素的一個組合.

組合數(shù):從 個不同元素中取出 個元素的所有組合的個數(shù),稱之,用符號 表示,如從6個元素中取出2個元素的組合數(shù)為 .

[評述]區(qū)分一個排列與一個組合的關鍵是:該問題是否與順序有關,當取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的取法,就是組合問題.

(學生活動)傾聽、思索、記錄.

(教師活動)提出思考問題.

[投影] 與 的關系如何?

(師生活動)共同探討.求從 個不同元素中取出 個元素的排列數(shù) ,可分為以下兩步:

第1步,先求出從這 個不同元素中取出 個元素的組合數(shù)為 ;

第2步,求每一個組合中 個元素的全排列數(shù)為 .

根據(jù)分步計數(shù)原理,得到

[字幕]公式1:

公式2:

(學生活動)驗算 ,即一條鐵路上6個火車站有15種不同的票價的普通客車票.

設計意圖:本著以認識概念為起點,以問題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識的形成過程,使學生思維層層被激活、逐漸深入到問題當中去.

【例題示范 探求方法】

(教師活動)打出字幕,給出示范,指導訓練.

[字幕]例1 列舉從4個元素 中任取2個元素的所有組合.

例2 計算:(1) ;(2) .

(學生活動)板演、示范.

(教師活動)講評并指出用兩種方法計算例2的第2小題.

[字幕]例3 已知 ,求 的所有值.

(學生活動)思考分析.

解 首先,根據(jù)組合的定義,有

其次,由原不等式轉化為

解得 ②

綜合①、②,得 ,即

[點評]這是組合數(shù)公式的應用,關鍵是公式的選擇.

設計意圖:例題教學循序漸進,讓學生鞏固知識,強化公式的應用,從而培養(yǎng)學生的綜合分析能力.

【反饋練習 學會應用】

(教師活動)給出練習,學生解答,教師點評.

[課堂練習]課本P99練習第2,5,6題.

[補充練習]

[字幕]1.計算:

2.已知 ,求 .

(學生活動)板演、解答.

設計意圖:課堂教學體現(xiàn)以學生為本,讓全體學生參與訓練,深刻揭示排列數(shù)公式的結構、特征及應用.

【點評矯正 交流提高】

(教師活動)依照學生的板演,給予指正并總結.

補充練習答案:

1.解:原式:

2.解:由題設得

整理化簡得 ,

解之,得 或 (因 ,舍去),

所以 ,所求

[字幕]小結:

1.前一個公式主要用于計算具體的組合數(shù),而后一個公式則主要用于對含有字母的式子進行化簡和論證.

2.在解含組合數(shù)的方程或不等式時,一定要注意組合數(shù)的上、下標的限制條件.

(學生活動)交流討論,總結記錄.

設計意圖:由“實踐——認識——一實踐”的認識論,教學時抓住“學習—一練習——反饋———小結”這些環(huán)節(jié),使教學目標得以強化和落實.

(三)小結

(師生活動)共同小結.

本節(jié)主要內容有

1.組合概念.

2.組合數(shù)計算的兩個公式.

(四)布置作業(yè)

1.課本作業(yè):習題10 3第1(1)、(4),3題.

2.思考題:某學習小組有8個同學,從男生中選2人,女生中選1人參加數(shù)學、物理、化學三種學科競賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學各有多少人?

3.研究性題:

在 的 邊上除頂點 外有 5個點,在 邊上有 4個點,由這些點(包括 )能組成多少個四邊形?能組成多少個三角形?

(五)課后點評

在學習了排列知識的基礎上,本節(jié)課引進了組合概念,并推導出組合數(shù)公式,同時調控進行訓練,從而培養(yǎng)學生分析問題、解決問題的能力.

作業(yè)參考答案

2.解;設有男同學 人,則有女同學 人,依題意有 ,由此解得 或 或2.即男同學有5人或6人,女同學相應為3人或2人.

3.能組成 (注意不能用 點為頂點)個四邊形, 個三角形.

探究活動

同室四人各寫一張賀年卡,先集中起來,然后每人從中拿一張別人送出的賀年卡,那么四張不同的分配萬式可有多少種?

解 設四人分別為甲、乙、丙、丁,可從多種角度來解.

解法一 可將拿賀卡的情況,按甲分別拿乙、丙、丁制作的賀卡的情形分為三類,即:

甲拿乙制作的賀卡時,則賀卡有3種分配方法.

甲拿丙制作的賀卡時,則賀卡有3種分配方法.

甲拿丁制作的賀卡時,則賀卡有3種分配方法.

由加法原理得,賀卡分配方法有3+3+3=9種.

解法二 可從利用排列數(shù)和組合數(shù)公式角度來考慮.這時還存在正向與逆向兩種思考途徑.

正向思考,即從滿足題設條件出發(fā),分步完成分配.先可由甲從乙、丙、丁制作的賀卡中選取1張,有 種取法,剩下的乙、丙、丁中所制作賀卡被甲取走后可在剩下的3張賀卡中選取1張,也有 種,最后剩下2人可選取的賀卡即是這2人所制作的賀卡,其取法只有互取對方制作賀卡1種取法.根據(jù)乘法原理,賀卡的分配方法有 (種).

逆向思考,即從4人取4張不同賀卡的所有取法中排除不滿足題設條件的取法.不滿足題設條件的取法為,其中只有1人取自己制作的賀卡,其中有2人取自己制作的賀卡,其中有3人取自己制作的賀卡(此時即為4人均拿自己制作的賀卡).其取法分別為 1.故符合題設要求的取法共有 (種).

說明(1)對一類元素不太多而利用排列或組合計算公式計算比較復雜,且容易重復遺漏計算的排列組合問題,常可采用直接分類后用加法原理進行計算,如本例采用解法一的做法.

(2)設集合 ,如果S中元素的一個排列 滿足 ,則稱該排列為S的一個錯位排列.本例就屬錯位排列問題.如將S的所有錯位排列數(shù)記為 ,則 有如下三個計算公式(李宇襄編著《組合數(shù)學》,北京師范大學出版社出版):

高三數(shù)學教案()

一、教學目標

(一)知識與技能

1、進一步熟練掌握求動點軌跡方程的基本方法。

2、體會數(shù)學實驗的直觀性、有效性,提高幾何畫板的操作能力。

(二)過程與方法

1、培養(yǎng)學生觀察能力、抽象概括能力及創(chuàng)新能力。

2、體會感性到理性、形象到抽象的思維過程。

3、強化類比、聯(lián)想的方法,領會方程、數(shù)形結合等思想。

(三)情感態(tài)度價值觀

1、感受動點軌跡的動態(tài)美、和諧美、對稱美

2、樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發(fā)提出問題和解決問題的勇氣

二、教學重點與難點

教學重點:運用類比、聯(lián)想的方法探究不同條件下的軌跡

教學難點:圖形、文字、符號三種語言之間的過渡

三、、教學方法和手段

【教學方法】觀察發(fā)現(xiàn)、啟發(fā)引導、合作探究相結合的教學方法。啟發(fā)引導學生積極思考并對學生的思維進行調控,幫助學生優(yōu)化思維過程,在此基礎上,提供給學生交流的機會,幫助學生對自己的思維進行組織和澄清,并能清楚地、準確地表達自己的數(shù)學思維。

【教學手段】利用網(wǎng)絡教室,四人一機,多媒體教學手段。通過上述教學手段,一方面:再現(xiàn)知識產(chǎn)生的過程,通過多媒體動態(tài)演示,突破學生在舊知和新知形成過程中的障礙(靜態(tài)到動態(tài));另一方面:節(jié)省了時間,提高了課堂教學的效率,激發(fā)了學生學習的興趣。

【教學模式】重點中學實施素質教育的課堂模式"創(chuàng)設情境、激發(fā)情感、主動發(fā)現(xiàn)、主動發(fā)展"。

四、教學過程

_ 1、創(chuàng)設情景,引入課題

生活中我們四處可見軌跡曲線的影子

【演示】這是美麗的城市夜景圖

【演示】許多人認為天體運行的軌跡都是圓錐曲線,

研究表明,天體數(shù)目越多,軌跡種類也越多

【演示】建筑中也有許多美麗的軌跡曲線

設計意圖:讓學生感受數(shù)學就在我們身邊,感受軌跡

曲線的動態(tài)美、和諧美、對稱美,激發(fā)學習興趣。

_ 2、激發(fā)情感,引導探索

靠在墻角的梯子滑落了,如果梯子上站著一個人,我們不禁會想,這個人是直直的摔下去呢?還是劃了一條優(yōu)美的曲線飛出去呢?我們把這個問題轉化為數(shù)學問題就是新教材高二上冊88頁20題,也就是這里的例題1;

例1、線段長為,兩個端點和分別在軸和軸上滑動,求線段的中點的軌跡方程。

第一步:讓學生借助畫板動手驗證軌跡

第二步:要求學生求出軌跡方程

法一:設,則

由得,

化簡得

法二:設,由得

化簡得

法三:設, 由點到定點的距離等于定長,

根據(jù)圓的定義得;

第三步:復習求軌跡方程的一般步驟

(1)建立適當?shù)淖鴺讼?/p>

(2)設動點的坐標M(_,y)

(3)列出動點相關的約束條件p(M)

(4)將其坐標化并化簡,f(_,y)=0

(5)證明

其中,最關鍵的一步是根據(jù)題意尋求等量關系,并把等量關系坐標化

設計意圖:在這里我借助幾何畫板的動畫功能,先讓學生直觀地、形象地、動態(tài)地感受動點的軌跡是圓,接著要求學生求出軌跡方程,最后師生共同回顧求軌跡方程的一般步驟,達到熟練掌握直譯法、定義法,體會從感性到理性、從形象到抽象的思維過程。

3、主動發(fā)現(xiàn)、主動發(fā)展

由上述例1可知,如果人站在梯子中間,則他會劃了一段優(yōu)美的圓弧飛出去。學生很自然就會想,如果人不是站在中間,而是隨意站,結果會怎樣呢?讓學生動手探究M不是中點時的軌跡。

第一步:利用網(wǎng)絡平臺展示學生得到的軌跡(教師有意識的整合在一起)

設計意圖:借助數(shù)學實驗,把原本屬于教師行為的設疑激趣還原于學生,讓學生自己在實踐過程中發(fā)現(xiàn)疑問,更容易激發(fā)學生學習的熱情,促使他們主動學習。

第二步:分解動作,向學生提出3個問題:

問題1:當M位置不同時,線段BM與MA的大小關系如何?

問題2、體現(xiàn)BM與MA大小關系還有什么常見的形式?

問題3、你能類比例1把這種數(shù)量關系表達出來嗎?

第三步:展示學生歸納、概括出來的數(shù)學問題

1、線段AB的長為2a,兩個端點B和A分別在_軸和Y軸上滑動,點M為AB上的點,滿足,求點M的軌跡方程。

2、線段AB的長為2a,兩個端點B和A分別在_軸和Y軸上滑動,點M為AB上的點,滿足,求點M的軌跡方程。

3、線段AB的長為2a,兩個端點B和A分別在_軸和Y軸上滑動,點M為AB上的點,滿足,求點M的軌跡方程。(說明是什么軌跡)

第四步:課堂完成學生歸納出來的問題1,問題2和3課后完成

4、合作探究、實現(xiàn)創(chuàng)新

改變A、點的運動方式,同樣考慮中點的軌跡,教師進行適當?shù)闹笇Вㄟ@里固定A點,運動B點)

學生主要列出了以下幾種運動方式:圓、橢圓、雙曲線、拋物線,并且得出了一些相應的軌跡。

5、布置作業(yè)、實現(xiàn)拓展

1、把上述同學們探究得到的軌跡圖形用文字、符號描述出來,(仿造例1),并求出軌跡方程。

2、已知A(4,0),點B是圓上一動點,AB中垂線與直線OB相交于點P,求點P的軌跡方程。

3、已知A(2,0),點B是圓上一動點,AB中垂線與直線OB相交于點P,求點P的軌跡方程。

4若把上述問題中垂線改為一般的垂線與直線OB相交于點P,請同學們利用畫板驗證點P 的軌跡。

以下是學生課后探究得到的一些軌跡圖形

課后有學生問,如果_軸和Y軸不垂直會有什么結果?定長的線段在上面滑動怎么做出來?

可以說,學生的這些問題我之前并沒有想過,給了我很大的觸動,同時也促使我更進一步去研究幾何畫板,提高自己的能力。在這里,我體會到了教師不再只是一根根蠟燭,更像是一盞盞明燈,在照亮別人的同時也照亮自己。

以下是_軸和Y軸不垂直時的軌跡圖形

五、教學設計說明:

(一)、教材

《平面動點的軌跡》是高二一節(jié)探究課,軌跡問題具有深厚的生活背景,求平面動點的軌跡方程涉及集合、方程、三角、平面幾何等基礎知識,其中滲透著運動與變化、方程的思想、數(shù)形結合的思想等,是中學數(shù)學的重要內容,也是歷年高考數(shù)學考查的重點之一。

(二)、校情、學情

校情:我校是一所省一級達標校,省級示范性高中,學校的硬件設施比較完

善,每間教室都具備多媒體教學的功能,另外有兩間網(wǎng)絡教室和一個學生電子

閱室,并且能隨時上網(wǎng)。

學情:大部分學生家里都有電腦,而且能隨時上網(wǎng)。對學生進行了幾何畫板基

本操作的培訓,學生能較快的畫出圓、橢圓、雙曲線、拋物線等基本的圓錐曲

線。學生對求軌跡方程的基本方法有了一定的掌握,但是對文字、圖形、符號

三種語言之間的轉換還存在很大的差異,在合作交流意識方面,發(fā)展不均衡,

有待加強。

(三)學法

觀察、實驗、交流、合作、類比、聯(lián)想、歸納、總結

(四)、教學過程

1、創(chuàng)設情景,引入課題

2、激發(fā)情感,引導探索

由梯子滑落問題抽象、概括出數(shù)學問題

第一步:讓學生借助畫板動手驗證軌跡

第二步:要求學生求出軌跡方程

第三步:復習求軌跡方程的一般步驟

3、主動發(fā)現(xiàn)、主動發(fā)展

探究M不是中點時的軌跡

第一步:利用網(wǎng)絡平臺展示學生得到的軌跡

第二步:分解動作,向學生提出3個問題:

第三步:展示學生歸納、概括出來的數(shù)學問題

4、合作探究、實現(xiàn)創(chuàng)新

改變A、點的運動方式,同樣考慮中點的軌跡,教師進行適當?shù)闹笇Вㄟ@里固定A點,運動B點)

學生主要列出了以下幾種運動方式:圓、橢圓、雙曲線、拋物線,并且得出了一些相應的軌跡。

5、布置作業(yè)、實現(xiàn)拓展

(五)、教學特色:

借助網(wǎng)絡、多媒體教學平臺,讓學生自己動手實驗,發(fā)現(xiàn)問題并解決問題,同時把學生的學習情況及時的展現(xiàn)出來,做到大家一起學習,一起評價的效果。同時節(jié)省了時間,提高了課堂效率。

整個教學過程,體現(xiàn)了四個統(tǒng)一:既學習書本知識與投身實踐的統(tǒng)一、書本學習與現(xiàn)代信息技術學習的統(tǒng)一、書本知識與資源拓展的統(tǒng)一、課堂學習與課外實踐的統(tǒng)一。

本節(jié)課學生精神飽滿、興趣濃厚、合作積極,與我保持良好的互動,還不時產(chǎn)生一些爭執(zhí),給我提出了一些新的問題,折射出我不足的方面,促進了我的進步與提高,師生間的教與學就像一面鏡子,互相折射,共同進步。

5篇高三數(shù)學教案總結相關文章

下學期高三數(shù)學教學工作總結范文5篇

高三學年數(shù)學教師工作總結范文5篇

高三數(shù)學教師2020年度工作總結5篇精選

高中數(shù)學教師教學心得與總結5篇

高三數(shù)學教師工作總結優(yōu)選范文5篇

高三數(shù)學教學總結

高三數(shù)學教學計劃5篇精選合集

數(shù)學教案高中教學范文5篇

高三數(shù)學教學計劃匯總大全5篇

2020高三數(shù)學教學工作總結

508811