高一數學必修必學知識點
在我們獲得成功之后,還應記得:勝不驕,要繼續(xù)努力,不要因為一時的成功而得意忘形,這樣才不會使自己一步錯,步步錯,而遺憾終生。以下是小編給大家整理的高一數學必修必學知識點,希望大家能夠喜歡!
高一數學必修必學知識點1
集合與元素
一個東西是集合還是元素并不是絕對的,很多情況下是相對的,集合是由元素組成的集合,元素是組成集合的元素。
例如:你所在的班級是一個集合,是由幾十個和你同齡的同學組成的集合,你相對于這個班級集合來說,是它的一個元素;
而整個學校又是由許許多多個班級組成的集合,你所在的班級只是其中的一分子,是一個元素。
班級相對于你是集合,相對于學校是元素,參照物不同,得到的結論也不同,可見,是集合還是元素,并不是絕對的。
.解集合問題的關鍵
解集合問題的關鍵:弄清集合是由哪些元素所構成的,也就是將抽象問題具體化、形象化,將特征性質描述法表示的集合用列舉法來表示,或用韋恩圖來表示抽象的集合,或用圖形來表示集合;
比如用數軸來表示集合,或是集合的元素為有序實數對時,可用平面直角坐標系中的圖形表示相關的集合等。
高一數學必修必學知識點2
1.進行集合的交、并、補運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數軸和文氏圖進行求解.
2.在應用條件時,易A忽略是空集的情況
3.你會用補集的思想解決有關問題嗎?
4.簡單命題與復合命題有什么區(qū)別?四種命題之間的相互關系是什么?如何判斷充分與必要條件?
5.你知道“否命題”與“命題的否定形式”的區(qū)別.
6.求解與函數有關的問題易忽略定義域優(yōu)先的原則.
7.判斷函數奇偶性時,易忽略檢驗函數定義域是否關于原點對稱.
8.求一個函數的解析式和一個函數的反函數時,易忽略標注該函數的定義域.
9.原函數在區(qū)間[-a,a]上單調遞增,則一定存在反函數,且反函數也單調遞增;但一個函數存在反函數,此函數不一定單調.例如:.
10.你熟練地掌握了函數單調性的證明方法嗎?定義法(取值,作差,判正負)和導數法
11.求函數單調性時,易錯誤地在多個單調區(qū)間之間添加符號“∪”和“或”;單調區(qū)間不能用集合或不等式表示.
12.求函數的值域必須先求函數的定義域。
13.如何應用函數的單調性與奇偶性解題?①比較函數值的大小;②解抽象函數不等式;③求參數的范圍(恒成立問題).這幾種基本應用你掌握了嗎?
14.解對數函數問題時,你注意到真數與底數的限制條件了嗎?
(真數大于零,底數大于零且不等于1)字母底數還需討論
15.三個二次(哪三個二次?)的關系及應用掌握了嗎?如何利用二次函數求最值?
16.用換元法解題時易忽略換元前后的等價性,易忽略參數的范圍。
17.“實系數一元二次方程有實數解”轉化時,你是否注意到:當時,“方程有解”不能轉化為。若原題中沒有指出是二次方程,二次函數或二次不等式,你是否考慮到二次項系數可能為的零的情形?
18.利用均值不等式求最值時,你是否注意到:“一正;二定;三等”.
19.絕對值不等式的解法及其幾何意義是什么?
20.解分式不等式應注意什么問題?用“根軸法”解整式(分式)不等式的注意事項是什么?
21.解含參數不等式的通法是“定義域為前提,函數的單調性為基礎,分類討論是關鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”.
22.在求不等式的解集、定義域及值域時,其結果一定要用集合或區(qū)間表示;不能用不等式表示.
23.兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意“同號可倒”即a>b>0,a<0.
24.解決一些等比數列的前項和問題,你注意到要對公比及兩種情況進行討論了嗎?
25.在“已知,求”的問題中,你在利用公式時注意到了嗎?(時,應有)需要驗證,有些題目通項是分段函數。
26.你知道存在的條件嗎?(你理解數列、有窮數列、無窮數列的概念嗎?你知道無窮數列的前項和與所有項的和的不同嗎?什么樣的無窮等比數列的所有項的和必定存在?
27.數列單調性問題能否等同于對應函數的單調性問題?(數列是特殊函數,但其定義域中的值不是連續(xù)的。)
28.應用數學歸納法一要注意步驟齊全,二要注意從到過程中,先假設時成立,再結合一些數學方法用來證明時也成立。
29.正角、負角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?
30.三角函數的定義及單位圓內的三角函數線(正弦線、余弦線、正切線)的定義你知道嗎?
31.在解三角問題時,你注意到正切函數、余切函數的定義域了嗎?你注意到正弦函數、余弦函數的有界性了嗎?
32.你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉化出現特殊角.異角化同角,異名化同名,高次化低次)
33.反正弦、反余弦、反正切函數的取值范圍分別是
34.你還記得某些特殊角的三角函數值嗎?
35.掌握正弦函數、余弦函數及正切函數的圖象和性質.你會寫三角函數的單調區(qū)間嗎?會寫簡單的三角不等式的解集嗎?(要注意數形結合與書寫規(guī)范,可別忘了),你是否清楚函數的圖象可以由函數經過怎樣的變換得到嗎?
36.函數的圖象的平移,方程的平移以及點的平移公式易混:
(1)函數的圖象的平移為“左+右-,上+下-”;如函數的圖象左移2個單位且下移3個單位得到的圖象的解析式為,即.
(2)方程表示的圖形的平移為“左+右-,上-下+”;如直線左移2個個單位且下移3個單位得到的圖象的解析式為,即.
(3)點的平移公式:點按向量平移到點,則.
37.在三角函數中求一個角時,注意考慮兩方面了嗎?(先求出某一個三角函數值,再判定角的范圍)
38.形如的周期都是,但的周期為。
39.正弦定理時易忘比值還等于2R.
高一數學必修必學知識點3
直線和平面的位置關系:
直線和平面只有三種位置關系:在平面內、與平面相交、與平面平行
①直線在平面內——有無數個公共點
②直線和平面相交——有且只有一個公共點
直線與平面所成的角:平面的一條斜線和它在這個平面內的射影所成的銳角。
esp.空間向量法(找平面的法向量)
規(guī)定:
a、直線與平面垂直時,所成的角為直角,
b、直線與平面平行或在平面內,所成的角為0°角
由此得直線和平面所成角的取值范圍為[0°,90°]
最小角定理:斜線與平面所成的角是斜線與該平面內任一條直線所成角中的最小角
三垂線定理及逆定理:如果平面內的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直
esp.直線和平面垂直
直線和平面垂直的定義:如果一條直線a和一個平面內的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。
直線與平面垂直的判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直于這個平面。
直線與平面垂直的性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。
③直線和平面平行——沒有公共點
直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。
直線和平面平行的判定定理:如果平面外一條直線和這個平面內的一條直線平行,那么這條直線和這個平面平行。
直線和平面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那么這條直線和交線平行。
高一數學必修必學知識點相關文章:
高一數學必修必學知識點
上一篇:高一學年數學必修知識點總結
下一篇:高一數學科必修必考知識點