国产成人v爽在线免播放观看,日韩欧美色,久久99国产精品久久99软件,亚洲综合色网站,国产欧美日韩中文久久,色99在线,亚洲伦理一区二区

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高一學(xué)習(xí)方法 > 高一數(shù)學(xué) >

高一數(shù)學(xué)考試必考的知識點概括

時間: 贊銳20 分享

我們要有計劃、有步驟地去進(jìn)行預(yù)習(xí)、復(fù)習(xí),并及時進(jìn)行階段性學(xué)習(xí)總結(jié),學(xué)習(xí)成績進(jìn)步肯定是事半功倍、功到自然成!否則,像個無頭蒼蠅一樣,東一榔頭西一棒子的亂來,只能是事倍功半、學(xué)習(xí)成績會不進(jìn)反退。小編帶來了的高一數(shù)學(xué)考試必考的知識點概括,希望大家能夠喜歡!

高一數(shù)學(xué)考試必考的知識點概括1

1.等比中項

如果在a與b中間插入一個數(shù)G,使a,G,b成等比數(shù)列,那么G叫做a與b的等比中項。

有關(guān)系:

注:兩個非零同號的實數(shù)的等比中項有兩個,它們互為相反數(shù),所以G2=ab是a,G,b三數(shù)成等比數(shù)列的必要不充分條件。

2.等比數(shù)列通項公式

an=a1_q’(n-1)(其中首項是a1,公比是q)

an=Sn-S(n-1)(n≥2)

前n項和

當(dāng)q≠1時,等比數(shù)列的前n項和的公式為

Sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)

當(dāng)q=1時,等比數(shù)列的前n項和的公式為

Sn=na1

3.等比數(shù)列前n項和與通項的關(guān)系

an=a1=s1(n=1)

an=sn-s(n-1)(n≥2)

4.等比數(shù)列性質(zhì)

(1)若m、n、p、q∈N_,且m+n=p+q,則am·an=ap·aq;

(2)在等比數(shù)列中,依次每k項之和仍成等比數(shù)列。

(3)從等比數(shù)列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

(4)等比中項:q、r、p成等比數(shù)列,則aq·ap=ar2,ar則為ap,aq等比中項。

記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

另外,一個各項均為正數(shù)的等比數(shù)列各項取同底指數(shù)冪后構(gòu)成一個等差數(shù)列;反之,以任一個正數(shù)C為底,用一個等差數(shù)列的各項做指數(shù)構(gòu)造冪Can,則是等比數(shù)列。在這個意義下,我們說:一個正項等比數(shù)列與等差數(shù)列是“同構(gòu)”的。

(5)等比數(shù)列前n項之和Sn=a1(1-q’n)/(1-q)

(6)任意兩項am,an的關(guān)系為an=am·q’(n-m)

(7)在等比數(shù)列中,首項a1與公比q都不為零。

注意:上述公式中a’n表示a的n次方。

高一數(shù)學(xué)考試必考的知識點概括2

集合的分類

(1)按元素屬性分類,如點集,數(shù)集。

(2)按元素的個數(shù)多少,分為有/無限集

關(guān)于集合的概念:

(1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構(gòu)成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。

(2)互異性:對于一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。

(3)無序性:判斷一些對象時候構(gòu)成集合,關(guān)鍵在于看這些對象是否有明確的標(biāo)準(zhǔn)。

集合可以根據(jù)它含有的元素的個數(shù)分為兩類:

含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。

非負(fù)整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N;

在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或N_;

整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z;

有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q;(有理數(shù)是整數(shù)和分?jǐn)?shù)的統(tǒng)稱,一切有理數(shù)都可以化成分?jǐn)?shù)的形式。)

實數(shù)全體構(gòu)成的集合,叫做實數(shù)集,記作R。(包括有理數(shù)和無理數(shù)。其中無理數(shù)就是無限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分?jǐn)?shù)。數(shù)學(xué)上,實數(shù)直觀地定義為和數(shù)軸上的點一一對應(yīng)的數(shù)。)

1.列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號“{}”內(nèi)表示這個集合,例如,由兩個元素0,1構(gòu)成的集合可表示為{0,1}.

有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。

例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}.

無限集有時也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}.

2.描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來描述。

例如:正偶數(shù)構(gòu)成的集合,它的每一個元素都具有性質(zhì):“能被2整除,且大于0”

而這個集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為

{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},

大括號內(nèi)豎線左邊的X表示這個集合的任意一個元素,元素X從實數(shù)集合中取值,在豎線右邊寫出只有集合內(nèi)的元素x才具有的性質(zhì)。

一般地,如果在集合I中,屬于集合A的任意一個元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}

它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡稱描述法。

例如:集合A={x∈R│x2-1=0}的特征是X2-1=0

高一數(shù)學(xué)考試必考的知識點概括3

方程的根與函數(shù)的零點

1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。

2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標(biāo)。即:

方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.

3、函數(shù)零點的求法:

求函數(shù)的零點:

1(代數(shù)法)求方程的實數(shù)根;

2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.

4、二次函數(shù)的零點:

二次函數(shù).

1、△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.

2、△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.

3、△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.

高一數(shù)學(xué)考試必考的知識點概括相關(guān)文章:

高一數(shù)學(xué)期末必考的知識點歸納

高一數(shù)學(xué)期末考試知識點總結(jié)

高一數(shù)學(xué)知識點總結(jié)(考前必看)

高一數(shù)學(xué)??贾R點總結(jié)

高一數(shù)學(xué)知識點總結(jié)期末必備

高一數(shù)學(xué)重點知識點公式總結(jié)

高一數(shù)學(xué)知識點全面總結(jié)

高中數(shù)學(xué)必考知識點歸納整理

高一數(shù)學(xué)知識點總結(jié)歸納

高一數(shù)學(xué)知識點匯總大全

1070686