国产成人v爽在线免播放观看,日韩欧美色,久久99国产精品久久99软件,亚洲综合色网站,国产欧美日韩中文久久,色99在线,亚洲伦理一区二区

學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高一學(xué)習(xí)方法>高一數(shù)學(xué)>

高一數(shù)學(xué)必記知識(shí)點(diǎn)概括

時(shí)間: 贊銳0 分享

做學(xué)習(xí)規(guī)劃是大家比較推崇的學(xué)習(xí)好方法?!胺彩骂A(yù)則立不預(yù)則廢”,在知己知彼的學(xué)情分析基礎(chǔ)上,制定一個(gè)明晰的學(xué)習(xí)規(guī)劃,明確自己的學(xué)習(xí)目標(biāo)和方向,以下是小編給大家整理的高一數(shù)學(xué)必記知識(shí)點(diǎn)概括,希望能幫助到你!

高一數(shù)學(xué)必記知識(shí)點(diǎn)概括1

向量:既有大小,又有方向的量.

數(shù)量:只有大小,沒(méi)有方向的量.

有向線段的三要素:起點(diǎn)、方向、長(zhǎng)度.

零向量:長(zhǎng)度為的向量.

單位向量:長(zhǎng)度等于個(gè)單位的向量.

相等向量:長(zhǎng)度相等且方向相同的向量

&向量的運(yùn)算

加法運(yùn)算

AB+BC=AC,這種計(jì)算法則叫做向量加法的三角形法則。

已知兩個(gè)從同一點(diǎn)O出發(fā)的兩個(gè)向量OA、OB,以O(shè)A、OB為鄰邊作平行四邊形OACB,則以O(shè)為起點(diǎn)的對(duì)角線OC就是向量OA、OB的和,這種計(jì)算法則叫做向量加法的平行四邊形法則。

對(duì)于零向量和任意向量a,有:0+a=a+0=a。

|a+b|≤|a|+|b|。

向量的加法滿足所有的加法運(yùn)算定律。

減法運(yùn)算

與a長(zhǎng)度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

數(shù)乘運(yùn)算

實(shí)數(shù)λ與向量a的積是一個(gè)向量,這種運(yùn)算叫做向量的數(shù)乘,記作λa,|λa|=|λ||a|,當(dāng)λ>0時(shí),λa的方向和a的方向相同,當(dāng)λ<0時(shí),λa的方向和a的方向相反,當(dāng)λ=0時(shí),λa=0。

設(shè)λ、μ是實(shí)數(shù),那么:(1)(λμ)a=λ(μa)(2)(λμ)a=λaμa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。

向量的加法運(yùn)算、減法運(yùn)算、數(shù)乘運(yùn)算統(tǒng)稱(chēng)線性運(yùn)算。

向量的數(shù)量積

已知兩個(gè)非零向量a、b,那么|a||b|cosθ叫做a與b的數(shù)量積或內(nèi)積,記作a?b,θ是a與b的夾角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數(shù)量積為0。

a?b的幾何意義:數(shù)量積a?b等于a的長(zhǎng)度|a|與b在a的方向上的投影|b|cosθ的乘積。

兩個(gè)向量的數(shù)量積等于它們對(duì)應(yīng)坐標(biāo)的乘積的和。

高一數(shù)學(xué)必記知識(shí)點(diǎn)概括2

I.定義與定義表達(dá)式

一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大.)

則稱(chēng)y為x的二次函數(shù)。

二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

II.二次函數(shù)的三種表達(dá)式

一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

頂點(diǎn)式:y=a(x-h)^2+k[拋物線的頂點(diǎn)P(h,k)]

交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]

注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

III.二次函數(shù)的圖像

在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

IV.拋物線的性質(zhì)

1.拋物線是軸對(duì)稱(chēng)圖形。對(duì)稱(chēng)軸為直線x=-b/2a。對(duì)稱(chēng)軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。

特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱(chēng)軸是y軸(即直線x=0)

2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

P(-b/2a,(4ac-b^2)/4a)

當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。

3.二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大小。

當(dāng)a>0時(shí),拋物線向上開(kāi)口;當(dāng)a<0時(shí),拋物線向下開(kāi)口。

|a|越大,則拋物線的開(kāi)口越小。

高一數(shù)學(xué)必記知識(shí)點(diǎn)概括3

一、指數(shù)函數(shù)

(一)指數(shù)與指數(shù)冪的運(yùn)算

1.根式的概念:一般地,如果,那么叫做的次方根,其中>1,且∈_.

負(fù)數(shù)沒(méi)有偶次方根;0的任何次方根都是0,記作。

當(dāng)是奇數(shù)時(shí),,當(dāng)是偶數(shù)時(shí),

2.分?jǐn)?shù)指數(shù)冪

正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

,

0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒(méi)有意義

3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)

(1)?;

(2);

(3).

(二)指數(shù)函數(shù)及其性質(zhì)

1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù),其中x是自變量,函數(shù)的定義域?yàn)镽.

注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.

2、指數(shù)函數(shù)的圖象和性質(zhì)

a>10

定義域R定義域R

值域y>0值域y>0

在R上單調(diào)遞增在R上單調(diào)遞減

非奇非偶函數(shù)非奇非偶函數(shù)

函數(shù)圖象都過(guò)定點(diǎn)(0,1)函數(shù)圖象都過(guò)定點(diǎn)(0,1)

注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:

(1)在[a,b]上,值域是或;

(2)若,則;取遍所有正數(shù)當(dāng)且僅當(dāng);

(3)對(duì)于指數(shù)函數(shù),總有;

二、對(duì)數(shù)函數(shù)

(一)對(duì)數(shù)

1.對(duì)數(shù)的概念:

一般地,如果,那么數(shù)叫做以為底的對(duì)數(shù),記作:(—底數(shù),—真數(shù),—對(duì)數(shù)式)

說(shuō)明:○1注意底數(shù)的限制,且;

○2;

○3注意對(duì)數(shù)的書(shū)寫(xiě)格式.

兩個(gè)重要對(duì)數(shù):

○1常用對(duì)數(shù):以10為底的對(duì)數(shù);

○2自然對(duì)數(shù):以無(wú)理數(shù)為底的對(duì)數(shù)的對(duì)數(shù).

指數(shù)式與對(duì)數(shù)式的互化

冪值真數(shù)

=N=b

底數(shù)

指數(shù)對(duì)數(shù)

(二)對(duì)數(shù)的運(yùn)算性質(zhì)

如果,且,,,那么:

○1?+;

○2-;

○3.

注意:換底公式:(,且;,且;).

利用換底公式推導(dǎo)下面的結(jié)論:(1);(2).

(3)、重要的公式①、負(fù)數(shù)與零沒(méi)有對(duì)數(shù);②、,③、對(duì)數(shù)恒等式

(二)對(duì)數(shù)函數(shù)

1、對(duì)數(shù)函數(shù)的概念:函數(shù),且叫做對(duì)數(shù)函數(shù),其中是自變量,函數(shù)的定義域是(0,+∞).

注意:○1對(duì)數(shù)函數(shù)的定義與指數(shù)函數(shù)類(lèi)似,都是形式定義,注意辨別。如:,都不是對(duì)數(shù)函數(shù),而只能稱(chēng)其為對(duì)數(shù)型函數(shù).

○2對(duì)數(shù)函數(shù)對(duì)底數(shù)的限制:,且.

2、對(duì)數(shù)函數(shù)的性質(zhì):

a>10

定義域x>0定義域x>0

值域?yàn)镽值域?yàn)镽

在R上遞增在R上遞減

函數(shù)圖象都過(guò)定點(diǎn)(1,0)函數(shù)圖象都過(guò)定點(diǎn)(1,0)

(三)冪函數(shù)

1、冪函數(shù)定義:一般地,形如的函數(shù)稱(chēng)為冪函數(shù),其中為常數(shù).

2、冪函數(shù)性質(zhì)歸納.

(1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過(guò)點(diǎn)(1,1);

(2)時(shí),冪函數(shù)的圖象通過(guò)原點(diǎn),并且在區(qū)間上是增函數(shù).特別地,當(dāng)時(shí),冪函數(shù)的圖象下凸;當(dāng)時(shí),冪函數(shù)的圖象上凸;

(3)時(shí),冪函數(shù)的圖象在區(qū)間上是減函數(shù).在第一象限內(nèi),當(dāng)從右邊趨向原點(diǎn)時(shí),圖象在軸右方無(wú)限地逼近軸正半軸,當(dāng)趨于時(shí),圖象在軸上方無(wú)限地逼近軸正半軸.

第四章函數(shù)的應(yīng)用

一、方程的根與函數(shù)的零點(diǎn)

1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。

2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。

即:方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).

3、函數(shù)零點(diǎn)的求法:

○1(代數(shù)法)求方程的實(shí)數(shù)根;

○2(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn).

4、二次函數(shù)的零點(diǎn):

二次函數(shù).

(1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).

(2)△=0,方程有兩相等實(shí)根,二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).

(3)△<0,方程無(wú)實(shí)根,二次函數(shù)的圖象與軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn).

5.函數(shù)的模型

高一數(shù)學(xué)必記知識(shí)點(diǎn)概括相關(guān)文章

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(考前必看)

高一數(shù)學(xué)知識(shí)點(diǎn)小歸納

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)期末必備

高一數(shù)學(xué)必修1知識(shí)點(diǎn)歸納總結(jié)

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

高一數(shù)學(xué)知識(shí)點(diǎn)匯總大全

高一數(shù)學(xué)知識(shí)點(diǎn)全面總結(jié)

高一數(shù)學(xué)必修1知識(shí)點(diǎn)歸納

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

高一數(shù)學(xué)必修一知識(shí)點(diǎn)匯總

高一數(shù)學(xué)必記知識(shí)點(diǎn)概括

做學(xué)習(xí)規(guī)劃是大家比較推崇的學(xué)習(xí)好方法?!胺彩骂A(yù)則立不預(yù)則廢”,在知己知彼的學(xué)情分析基礎(chǔ)上,制定一個(gè)明晰的學(xué)習(xí)規(guī)劃,明確自己的學(xué)習(xí)目標(biāo)和方向,以下是小編給大家整理的高一數(shù)學(xué)必記知識(shí)點(diǎn)概括,希望能幫助到你
推薦度:
點(diǎn)擊下載文檔文檔為doc格式

精選文章

1070690