高一學(xué)年的數(shù)學(xué)重要總知識點
做好全面復(fù)習(xí)。為了防止前面所學(xué)知識的遺忘,每隔一段時間,不要超過十天,將前面學(xué)過的所有知識復(fù)習(xí)一篇,可以通過看書、看筆記、做題、反思等方式。以下是小編給大家整理的高一數(shù)學(xué)知識點,希望大家能夠喜歡!
高一學(xué)年的數(shù)學(xué)重要總知識點
1、函數(shù)零點的定義
(1)對于函數(shù))(xfy,我們把方程0)(xf的實數(shù)根叫做函數(shù))(xfy的零點。
(2)方程0)(xf有實根?函數(shù)()yfx的圖像與x軸有交點?函數(shù)()yfx有零點。因此判斷一個函數(shù)是否有零點,有幾個零點,就是判斷方程0)(xf是否有實數(shù)根,有幾個實數(shù)根。函數(shù)零點的求法:解方程0)(xf,所得實數(shù)根就是()fx的零點(3)變號零點與不變號零點
①若函數(shù)()fx在零點0x左右兩側(cè)的函數(shù)值異號,則稱該零點為函數(shù)()fx的變號零點。②若函數(shù)()fx在零點0x左右兩側(cè)的函數(shù)值同號,則稱該零點為函數(shù)()fx的不變號零點。
③若函數(shù)()fx在區(qū)間,ab上的圖像是一條連續(xù)的曲線,則0)()(
2、函數(shù)零點的判定
(1)零點存在性定理:如果函數(shù))(xfy在區(qū)間],[ba上的圖象是連續(xù)不斷的曲線,并且有()()0fafb,那么,函數(shù))(xfy在區(qū)間,ab內(nèi)有零點,即存在),(0bax,使得0)(0xf,這個0x也就是方程0)(xf的根。
(2)函數(shù))(xfy零點個數(shù)(或方程0)(xf實數(shù)根的個數(shù))確定方法
①代數(shù)法:函數(shù))(xfy的零點?0)(xf的根;②(幾何法)對于不能用求根公式的方程,可以將它與函數(shù))(xfy的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點。
(3)零點個數(shù)確定
0)(xfy有2個零點?0)(xf有兩個不等實根;0)(xfy有1個零點?0)(xf有兩個相等實根;0)(xfy無零點?0)(xf無實根;對于二次函數(shù)在區(qū)間,ab上的零點個數(shù),要結(jié)合圖像進(jìn)行確定.
3、二分法
(1)二分法的定義:對于在區(qū)間[,]ab上連續(xù)不斷且()()0fafb的函數(shù)()yfx,通過不斷地把函數(shù)()yfx的零點所在的區(qū)間一分為二,使區(qū)間的兩個端點逐步逼近零點,進(jìn)而得到零點的近似值的方法叫做二分法;
(2)用二分法求方程的近似解的步驟:
①確定區(qū)間[,]ab,驗證()()0fafb,給定精確度e;
②求區(qū)間(,)ab的中點c;③計算()fc;
(ⅰ)若()0fc,則c就是函數(shù)的零點;
(ⅱ)若()()0fafc,則令bc(此時零點0(,)xac);(ⅲ)若()()0fcfb,則令ac(此時零點0(,)xcb);
④判斷是否達(dá)到精確度e,即ab,則得到零點近似值為a(或b);否則重復(fù)②至④步.
高一數(shù)學(xué)重要總知識點
并集:以屬于A或?qū)儆贐的元素為元素的集合稱為A與B的并(集),記作A∪B(或B∪A),讀作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}交集:以屬于A且屬于B的元差集表示
素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。那么因為A和B中都有1,5,所以A∩B={1,5}。再來看看,他們兩個中含有1,2,3,5這些個元素,不管多少,反正不是你有,就是我有。那么說A∪B={1,2,3,5}。圖中的陰影部分就是A∩B。有趣的是;例如在1到105中不是3,5,7的整倍數(shù)的數(shù)有多少個。結(jié)果是3,5,7每項減集合
1再相乘。48個。對稱差集:設(shè)A,B為集合,A與B的對稱差集A?B定義為:A?B=(A-B)∪(B-A)例如:A={a,b,c},B={b,d},則A?B={a,c,d}對稱差運算的另一種定義是:A?B=(A∪B)-(A∩B)無限集:定義:集合里含有無限個元素的集合叫做無限集有限集:令N_是正整數(shù)的全體,且N_n={1,2,3,……,n},如果存在一個正整數(shù)n,使得集合A與N_n一一對應(yīng),那么A叫做有限集合。差:以屬于A而不屬于B的元素為元素的集合稱為A與B的差(集)。記作:A\B={x│x∈A,x不屬于B}。注:空集包含于任何集合,但不能說“空集屬于任何集合”.補集:是從差集中引出的概念,指屬于全集U不屬于集合A的元素組成的集合稱為集合A的補集,記作CuA,即CuA={x|x∈U,且x不屬于A}空集也被認(rèn)為是有限集合。例如,全集U={1,2,3,4,5}而A={1,2,5}那么全集有而A中沒有的3,4就是CuA,是A的補集。CuA={3,4}。在信息技術(shù)當(dāng)中,常常把CuA寫成~A。
高一數(shù)學(xué)重要總知識點梳理
【差數(shù)列的基本性質(zhì)】
⑴公差為d的等差數(shù)列,各項同加一數(shù)所得數(shù)列仍是等差數(shù)列,其公差仍為d.
⑵公差為d的等差數(shù)列,各項同乘以常數(shù)k所得數(shù)列仍是等差數(shù)列,其公差為kd.
⑶若{a}、為等差數(shù)列,則{a±b}與{ka+b}(k、b為非零常數(shù))也是等差數(shù)列.
⑷對任何m、n,在等差數(shù)列{a}中有:a=a+(n-m)d,特別地,當(dāng)m=1時,便得等差數(shù)列的通項公式,此式較等差數(shù)列的通項公式更具有一般性.
⑸、一般地,如果l,k,p,…,m,n,r,…皆為自然數(shù),且l+k+p+…=m+n+r+…(兩邊的自然數(shù)個數(shù)相等),那么當(dāng){a}為等差數(shù)列時,有:a+a+a+…=a+a+a+….
⑹公差為d的等差數(shù)列,從中取出等距離的項,構(gòu)成一個新數(shù)列,此數(shù)列仍是等差數(shù)列,其公差為kd(k為取出項數(shù)之差).
⑺如果{a}是等差數(shù)列,公差為d,那么,a,a,…,a、a也是等差數(shù)列,其公差為-d;在等差數(shù)列{a}中,a-a=a-a=md.(其中m、k、)
⑻在等差數(shù)列中,從第一項起,每一項(有窮數(shù)列末項除外)都是它前后兩項的等差中項.
⑼當(dāng)公差d>0時,等差數(shù)列中的數(shù)隨項數(shù)的增大而增大;當(dāng)d<0時,等差數(shù)列中的數(shù)隨項數(shù)的減少而減小;d=0時,等差數(shù)列中的數(shù)等于一個常數(shù).
⑽設(shè)a,a,a為等差數(shù)列中的三項,且a與a,a與a的項距差之比=(≠-1),則a=.
⑴數(shù)列{a}為等差數(shù)列的充要條件是:數(shù)列{a}的前n項和S可以寫成S=an+bn的形式(其中a、b為常數(shù)).
⑵在等差數(shù)列{a}中,當(dāng)項數(shù)為2n(nN)時,S-S=nd,=;當(dāng)項數(shù)為(2n-1)(n)時,S-S=a,=.
⑶若數(shù)列{a}為等差數(shù)列,則S,S-S,S-S,…仍然成等差數(shù)列,公差為.
⑷若兩個等差數(shù)列{a}、的前n項和分別是S、T(n為奇數(shù)),則=.
⑸在等差數(shù)列{a}中,S=a,S=b(n>m),則S=(a-b).
⑹等差數(shù)列{a}中,是n的一次函數(shù),且點(n,)均在直線y=x+(a-)上.
⑺記等差數(shù)列{a}的前n項和為S.①若a>0,公差d<0,則當(dāng)a≥0且a≤0時,S;②若a<0,公差d>0,則當(dāng)a≤0且a≥0時,S最小.
數(shù)學(xué)的學(xué)習(xí)方法
1、課內(nèi)重視聽講,課后及時復(fù)習(xí)。新知識的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進(jìn)行,所以要特點重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。
2、上課時要緊跟老師的思路,積極展開思維預(yù)測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識和基本技能的學(xué)習(xí),課后要及時復(fù)習(xí)不留疑點。
3、首先要在做各種習(xí)題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不采用不清楚立即翻書之舉。
4、認(rèn)真獨立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問的學(xué)習(xí)作風(fēng),對于有些題目由于自己的思路不清,一時難以解出,應(yīng)讓自己冷靜下來認(rèn)真分析題目,盡量自己解決。在每個階段的學(xué)習(xí)中要進(jìn)行整理和歸納總結(jié),把知識的點、線、面結(jié)合起來交織成知識網(wǎng)絡(luò),納入自己的知識體系。
5、適當(dāng)多做題,養(yǎng)成良好的解題習(xí)慣。要想學(xué)好數(shù)學(xué),多做題目是難免的,熟悉掌握各種題型的解題思路。
6、剛開始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。
7、叫魚與學(xué)習(xí)(學(xué)習(xí)王站)覺得數(shù)學(xué)學(xué)習(xí)是一個長久的事情,需要持之以恒才能見到效果。
高一學(xué)年的數(shù)學(xué)重要總知識點分析相關(guān)文章:
★ 高一數(shù)學(xué)知識點總結(jié)(考前必看)
★ 高一數(shù)學(xué)重點知識點公式總結(jié)
★ 高一數(shù)學(xué)知識點總結(jié)期末必備