高一數(shù)學(xué)第一冊必掌握的知識點歸納
提高學(xué)習(xí)成績的過程就是發(fā)現(xiàn),提出并解決疑問的過程。大膽向老師質(zhì)疑,不是笨的反映,而是在追求真知、積極進取的表現(xiàn)。以下是小編給大家整理的高一數(shù)學(xué)第一冊必掌握的知識點歸納,希望大家能夠喜歡!
高一數(shù)學(xué)第一冊必掌握的知識點歸納1
1、對應(yīng)、映射、函數(shù)三個概念既有共性又有區(qū)別,映射是一種特殊的對應(yīng),而函數(shù)又是一種特殊的映射.
2、對于函數(shù)的概念,應(yīng)注意如下幾點:
(1)掌握構(gòu)成函數(shù)的三要素,會判斷兩個函數(shù)是否為同一函數(shù).
(2)掌握三種表示法——列表法、解析法、圖象法,能根實際問題尋求變量間的函數(shù)關(guān)系式,特別是會求分段函數(shù)的解析式.
(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復(fù)合函數(shù),其中g(shù)(x)為內(nèi)函數(shù),f(u)為外函數(shù).
3、求函數(shù)y=f(x)的反函數(shù)的一般步驟:
(1)確定原函數(shù)的值域,也就是反函數(shù)的定義域;
(2)由y=f(x)的解析式求出x=f-1(y);
(3)將x,y對換,得反函數(shù)的習(xí)慣表達式y(tǒng)=f-1(x),并注明定義域.
注意①:對于分段函數(shù)的反函數(shù),先分別求出在各段上的反函數(shù),然后再合并到一起.
②熟悉的應(yīng)用,求f-1(x0)的值,合理利用這個結(jié)論,可以避免求反函數(shù)的過程,從而簡化運算.
高一數(shù)學(xué)第一冊必掌握的知識點歸納2
1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.
記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.
2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.
3、交集與并集的性質(zhì):A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,
A∪φ=A,A∪B=B∪A.
4、全集與補集
(1)補集:設(shè)S是一個集合,A是S的一個子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)
記作:CSA即CSA={x|x?S且x?A}
S
CsA
A
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。
(3)性質(zhì):⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U
高一數(shù)學(xué)第一冊必掌握的知識點歸納3
(1)程序框圖基本概念:
①程序構(gòu)圖的概念:程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形。
一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明。
②構(gòu)成程序框的圖形符號及其作用
學(xué)習(xí)這部分知識的時候,要掌握各個圖形的形狀、作用及使用規(guī)則,畫程序框圖的規(guī)則如下:
1、使用標準的圖形符號。
2、框圖一般按從上到下、從左到右的方向畫。
3、除判斷框外,大多數(shù)流程圖符號只有一個進入點和一個退出點。判斷框具有超過一個退出點的符號。
4、判斷框分兩大類,一類判斷框“是”與“否”兩分支的判斷,而且有且僅有兩個結(jié)果;另一類是多分支判斷,有幾種不同的結(jié)果。
5、在圖形符號內(nèi)描述的語言要非常簡練清楚。
高一數(shù)學(xué)第一冊必掌握的知識點歸納相關(guān)文章:
★ 高一數(shù)學(xué)知識點總結(jié)(考前必看)
★ 高一數(shù)學(xué)知識點總結(jié)期末必備
★ 高一數(shù)學(xué)必修1知識點歸納總結(jié)