高一數(shù)學學習方法策略整理通用模板
只有學習精彩,生命才精彩,只有學習成功,事業(yè)才成功。每一門科目都有自己的學習方法,數(shù)學作為最燒腦的科目之一,需要不斷的練習。下面是小編給大家整理的一些高一數(shù)學學習方法,希望對大家有所幫助。
高一數(shù)學學習方法參考
1、培養(yǎng)良好的學習習慣。
(1)制定計劃明確學習目的。合理的學習計劃是推動我們主動學習和克服困難的內(nèi)在動力。計劃先由老師指導督促,再一定要由自己切實完成,既有長遠打算,又有短期安排,執(zhí)行過程中嚴格要求自己,磨煉學習意志。
(2)課前預(yù)習是取得較好學習效果的基礎(chǔ)。課前預(yù)習不僅能培養(yǎng)自學能力,而且能提高學習新課的興趣,掌握學習的主動權(quán)。預(yù)習不能搞走過場,要講究質(zhì)量,力爭在課前把教材弄懂,上課著重聽老師講思路,把握重點,突破難點,盡可能把問題解決在課堂上。
(3)上課是理解和掌握基本知識、基本技能和基本方法的關(guān)鍵環(huán)節(jié)。學然后知不足,上課更能專心聽重點難點,把老師補充的內(nèi)容記錄下來,而不是全抄全錄,顧此失彼。
(4)及時復(fù)習是提高效率學習的重要一環(huán)。通過反復(fù)閱讀教材,多方面查閱有關(guān)資料,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關(guān)舊知識聯(lián)系起來,進行分析比效,一邊復(fù)習一邊將復(fù)習成果整理在筆記本上,使對所學的新知識由懂到會。
(5)獨立作業(yè)是通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的掌握過程。這一過程也是對我們意志毅力的考驗,通過運用使我們對所學知識由會到熟。
(6)解決疑難是指對獨立完成作業(yè)過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。解決疑難一定要有鍥而不舍的精神。做錯的作業(yè)再做一遍。對錯誤的地方?jīng)]弄清楚要反復(fù)思考。實在解決不了的要請教老師和同學,并要經(jīng)常把易錯的地方拿來復(fù)習強化,作適當?shù)闹貜?fù)性練習,把求老師問同學獲得的東西消化變成自己的知識,長期堅持使對所學知識由熟到活。
(7)系統(tǒng)小結(jié)是通過積極思考,達到全面系統(tǒng)深刻地掌握知識和發(fā)展認識能力的重要環(huán)節(jié)。小結(jié)要在系統(tǒng)復(fù)習的基礎(chǔ)上以教材為依據(jù),參照筆記與資料,通過分析、綜合、類比、概括,揭示知識間的內(nèi)在聯(lián)系,以達到對所學知識融會貫通的目的。經(jīng)常進行多層次小結(jié),能對所學知識由活到悟。
(8)課外學習包括閱讀課外書籍與報刊,參加學科競賽與講座,走訪高年級同學或老師交流學習心得等。課外學習是課內(nèi)學習的補充和繼續(xù),它不僅能豐富同學們的文化科學知識,加深和鞏固課內(nèi)所學的知識,而且能夠滿足和發(fā)展我們的興趣愛好,培養(yǎng)獨立學習和工作的能力,激發(fā)求知欲與學習熱情。
2、循序漸進,積極歸因,防止急躁。
由于高一同學年齡較小,閱歷有限,為數(shù)不少的同學容易急躁。有的同學貪多求快,囫圇吞棗,想靠幾天沖刺一蹴而就。學習是一個長期的鞏固舊知、發(fā)現(xiàn)新知的積累過程,決非一朝一夕可以完成的。許多優(yōu)秀的同學能取得好成績,其中一個重要原因是他們的基本功扎實,他們的閱讀、書寫、運算技能達到了自動化或半自動化的熟練程度。讓高一同學學會積極歸因,樹立自信心,如:取得一點成績及時體會成功,強化學習能力;遇到挫折及時調(diào)整學習方法、策略,更加努力改變挫折,循序漸進,爭取在高考成功。
3、注意研究學科特點,尋找學習方法。
數(shù)學學科擔負著培養(yǎng)運算能力、邏輯思維能力、空間想象能力,以及運用所學知識分析問題、解決問題的能力的重任。其中運算能力的培養(yǎng)一定要講究活,只看書不做題不行,只埋頭做題不總結(jié)積累也不行,教學中進行一題多解思考,優(yōu)化運算策略;邏輯思維能力是具有高度的抽象性、邏輯性和廣泛的適用性,對能力要求較高,使用歸類、網(wǎng)聯(lián)策略,區(qū)別好幾個概念:三段式推理、四種命題和充要條件的關(guān)系;空間想象能力對平面知識的擴充既要能鉆進去,又要能跳出來,結(jié)合立體幾何,體會圖形、符號和文字之間的互化;運用所學知識分析問題、解決問題的能力,就是要重視應(yīng)用題的轉(zhuǎn)化訓練,歸類數(shù)學模型,體會數(shù)學語言。華羅庚先生倡導的由薄到厚和由厚到薄的學習過程就是這個道理,方法因人而異,但學習的四個環(huán)節(jié)(預(yù)習、上課、作業(yè)、復(fù)習)和一個步驟(歸納總結(jié))是少不了的。
高一年級數(shù)學高效學習方法
一、基礎(chǔ)必須要扎實。講新課的時候要好好聽課,爭取一次聽懂。數(shù)學講究舉一反三。這些基礎(chǔ)題目相當于母題了。試卷時一般有百分之六十至七十的基礎(chǔ)題。
二、關(guān)于選擇題。試卷上一般是以選擇題開頭,做的題多了,一般算一遍就能出答案了,相信第一感覺。前10個一般為基礎(chǔ)題,比較好做,花的時間不會太多。后2個難度系數(shù)就大了,可以先放放,有時間再做或者簡單計算,可以四選一嘛。
三、About大題。這個就是最后沖刺階段了。前幾個,難度適當,題型也比較固定,是按部就班的來,寫一步有一步的分數(shù),就算結(jié)果不對,分數(shù)也不會低的。后兩個大題,就屬于高檔題了,可以先做前幾個小題,最后一問就是腦力勞動了,視時間而定。
四、合理把握時間。平常的學習時間要合理規(guī)劃。可抽出一小部分時間翻翻錯題集,個人感覺蠻有用,溫故而知新。
高一數(shù)學復(fù)習方法推薦
讀好課本,學會研究
同學們應(yīng)從高一開始,增強自己從課本入手進行研究的意識。同學們可以把每條定理、每道例題都當做習題,認真地重證、重解,并適當加些批注。要通過對典型例題的講解分析,歸納出解決這類問題的數(shù)學思想和方法,并做好解題后的反思,總結(jié)出解題的一般規(guī)律和特殊規(guī)律,以便推廣和靈活運用。另外,同學們要盡可能獨立解題,因為求解過程,也是培養(yǎng)分析問題和解決問題能力的一個過程,更是一個研究過程。
記好筆記,注重課堂
“要學好數(shù)學,培養(yǎng)好的聽課習慣也很重要?!蓖瑢W們在聽課的時候要集中注意力,把老師講的關(guān)鍵性部分聽懂、聽會。聽的時候要注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應(yīng)適當?shù)赜心康男缘赜浐霉P記,領(lǐng)會課上老師的主要精神與意圖。
做好作業(yè),講究規(guī)范
在課堂、課外練習中,培養(yǎng)良好的作業(yè)習慣也很有必要。同學們在做作業(yè)時,不但要做得整齊、清潔,培養(yǎng)一種美感,還要有條理,這是培養(yǎng)邏輯能力的一條有效途徑。作業(yè)應(yīng)獨立完成,這樣可以培養(yǎng)獨立思考的能力和解題正確的責任感。在作業(yè)時要提倡效率,應(yīng)該十分鐘完成的作業(yè),不拖到半小時完成,拖沓的做作業(yè)習慣容易使思維松散、精力不集中,這對培養(yǎng)數(shù)學能力是有害而無益的。
寫好總結(jié),把握規(guī)律
“不會總結(jié)的同學,他的能力就不會提高,挫折經(jīng)驗是成功的基石?!币獙W好數(shù)學,同學們就應(yīng)該經(jīng)常做好總結(jié),把握規(guī)律。通過與老師、同學平時的接觸交流,可以逐步總結(jié)出一般性的學習步驟,包括:制定計劃、課前自學、專心上課、及時復(fù)習、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學習幾個方面,簡單概括為四個環(huán)節(jié)(預(yù)習、上課、整理、作業(yè))和一個步驟(復(fù)習總結(jié))。每一個環(huán)節(jié)都有較深刻的內(nèi)容,帶有較強的目的性、針對性,要落實到位。應(yīng)堅持“兩先兩后一小結(jié)”(先預(yù)習后聽課,先復(fù)習后做作業(yè),寫好每個單元的總結(jié))的學習習慣。
高一數(shù)學知識點總結(jié)
1.函數(shù)的奇偶性
(1)若f(x)是偶函數(shù),那么f(x)=f(-x);
(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));
(3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;
(5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;
2.復(fù)合函數(shù)的有關(guān)問題
(1)復(fù)合函數(shù)定義域求法:若已知的定義域為[a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。
(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;
3.函數(shù)圖像(或方程曲線的對稱性)
(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在圖像上;
(2)證明圖像C1與C2的對稱性,即證明C1上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;
(3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲線C1:f(x,y)=0關(guān)于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;
(5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱,高中數(shù)學;
(6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對稱;
高一數(shù)學學習方法策略整理通用模板相關(guān)文章: