高一數(shù)學必修一知識點整理大全
高一新生要作好充分思想準備,以自信、寬容的心態(tài),盡快融入集體,適應新同學、適應新校園環(huán)境、適應與初中迥異的紀律制度。下面是小編給大家?guī)淼?a href='http://www.zbfsgm.com/xuexiff/gaoyishuxue/' target='_blank'>高一數(shù)學必修一知識點整理大全,以供大家參考!
高一數(shù)學必修一知識點整理大全
空間幾何體表面積體積公式:
1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
3、a-邊長,S=6a2,V=a3
4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc
5、棱柱S-h-高V=Sh
6、棱錐S-h-高V=Sh/3
7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6
9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圓柱R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)
11、r-底半徑h-高V=πr^2h/3
12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6
14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
15、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6
16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4
17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)
高一數(shù)學知識點小結
函數(shù)圖象知識歸納
(1)定義:在平面直角坐標系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的函數(shù)C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函數(shù)關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數(shù)對x、y為坐標的點(x,y),均在C上.
(2)畫法
A、描點法:
B、圖象變換法
常用變換方法有三種
1)平移變換
2)伸縮變換
3)對稱變換
4.高中數(shù)學函數(shù)區(qū)間的概念
(1)函數(shù)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間
(2)無窮區(qū)間
5.映射
一般地,設A、B是兩個非空的函數(shù),如果按某一個確定的對應法則f,使對于函數(shù)A中的任意一個元素x,在函數(shù)B中都有確定的元素y與之對應,那么就稱對應f:AB為從函數(shù)A到函數(shù)B的一個映射。記作“f(對應關系):A(原象)B(象)”
對于映射f:A→B來說,則應滿足:
(1)函數(shù)A中的每一個元素,在函數(shù)B中都有象,并且象是的;
(2)函數(shù)A中不同的元素,在函數(shù)B中對應的象可以是同一個;
(3)不要求函數(shù)B中的每一個元素在函數(shù)A中都有原象。
6.高中數(shù)學函數(shù)之分段函數(shù)
(1)在定義域的不同部分上有不同的解析表達式的函數(shù)。
(2)各部分的自變量的取值情況.
(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.
補充:復合函數(shù)
如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復合函數(shù)。
高中數(shù)學重要知識點摘要
1、圓是定點的距離等于定長的點的集合
2、圓的內部可以看作是圓心的距離小于半徑的點的集合
3、圓的外部可以看作是圓心的距離大于半徑的點的集合
4、同圓或等圓的半徑相等
5、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的`圓
6、和已知線段兩個端點的距離相等的點的軌跡,是這條線段的垂直平分線
7、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
8、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
9、定理不在同一直線上的三點確定一個圓。
10、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
11、推論1:
①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧。
12、推論2:圓的兩條平行弦所夾的弧相等
13、圓是以圓心為對稱中心的中心對稱圖形
14、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
15、推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
16、定理:一條弧所對的圓周角等于它所對的圓心角的一半
17、推論:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
18、推論:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
19、推論:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形
20、定理:圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角
21、①直線L和⊙O相交d<r< p="">
②直線L和⊙O相切d=r
③直線L和⊙O相離d>r
22、切線的判定定理:經過半徑的外端并且垂直于這條半徑的直線是圓的切線
23、切線的性質定理:圓的切線垂直于經過切點的半徑
24、推論:經過圓心且垂直于切線的直線必經過切點
25、推論:經過切點且垂直于切線的直線必經過圓心
26、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
27、圓的外切四邊形的兩組對邊的和相等
28、弦切角定理:弦切角等于它所夾的弧對的圓周角
29、推論:如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等
30、相交弦定理:圓內的兩條相交弦,被交點分成的兩條線段長的積相等
31、推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項
32、切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
33、推論:從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
34、如果兩個圓相切,那么切點一定在連心線上
35、①兩圓外離d>R+r
②兩圓外切d=R+r
③兩圓相交R-r<dr)
④兩圓內切d=R-r(R>r)
⑤兩圓內含dr)
36、定理:相交兩圓的連心線垂直平分兩圓的公共弦
37、定理:把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
38、定理:
任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
39、正n邊形的每個內角都等于(n-2)×180°/n
40、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
41、正n邊形的面積Sn=pr/2p表示正n邊形的周長,r為邊心距
42、正三角形面積√3a2/4a表示邊長
43、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此
k(n-2)180°/n=360°化為(n-2)(k-2)=4
44、弧長計算公式:L=n兀R/180
45、扇形面積公式:
S扇形=n兀R2/360=LR/2
外公切線長=d-(R+r)
數(shù)學學習中常見問題分析
大部分學生在學習中或多或少的都會積累一些問題,這些問題平時我們可能不是很在意,那么到了初二后就會突顯出來。首先新生在學習數(shù)學的時候常遇到的就是對于知識點的理解不到位,還停留在一知半解的層次上面。有的學生在解答數(shù)學題的時候始終不能把握解題技巧,也就是說學生缺乏對待數(shù)學的舉一反三能力。
還有的學生在解答數(shù)學題時效率太低,無法再規(guī)定的時間內完成解題,對于初中的考試節(jié)奏還沒辦法適應。一些學生還沒有養(yǎng)成一個總結歸納的習慣,不會歸納知識點,不會歸納錯題。這些都是導致學生學不好數(shù)學的原因。
正確對待考試
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對于那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納。調整好自己的心態(tài),使自己在任何時候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好準備,練練常規(guī)題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發(fā)揮。
高一數(shù)學必修一知識點整理大全相關文章: