国产成人v爽在线免播放观看,日韩欧美色,久久99国产精品久久99软件,亚洲综合色网站,国产欧美日韩中文久久,色99在线,亚洲伦理一区二区

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高一學(xué)習(xí)方法 > 高一數(shù)學(xué) >

高中數(shù)學(xué)必修1知識(shí)點(diǎn)總結(jié)

時(shí)間: 維維20 分享

機(jī)會(huì)從不會(huì)“失掉”,你失掉了,自有別人會(huì)得到。不要凡事在天,守株待兔,更不要寄希望于“機(jī)會(huì)”。下面給大家?guī)硪恍└咧袛?shù)學(xué)必修1知識(shí)點(diǎn),希望對(duì)大家有所幫助。

高中數(shù)學(xué)必修1知識(shí)點(diǎn)總結(jié)

高中數(shù)學(xué)必修1知識(shí)點(diǎn)

1

1.數(shù)列的定義

按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個(gè)數(shù)都叫做數(shù)列的項(xiàng).

(1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.

(2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個(gè)相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1,….  (3)數(shù)列的項(xiàng)與它的項(xiàng)數(shù)是不同的,數(shù)列的項(xiàng)是指這個(gè)數(shù)列中的某一個(gè)確定的數(shù),是一個(gè)函數(shù)值,也就是相當(dāng)于f(n),而項(xiàng)數(shù)是指這個(gè)數(shù)在數(shù)列中的位置序號(hào),它是自變量的值,相當(dāng)于f(n)中的n.

(4)次序?qū)τ跀?shù)列來講是十分重要的,有幾個(gè)相同的數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個(gè)相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別.如:2,3,4,5,6這5個(gè)數(shù)按不同的次序排列時(shí),就會(huì)得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個(gè)集合.

2.數(shù)列的分類

(1)根據(jù)數(shù)列的項(xiàng)數(shù)多少可以對(duì)數(shù)列進(jìn)行分類,分為有窮數(shù)列和無窮數(shù)列.在寫數(shù)列時(shí),對(duì)于有窮數(shù)列,要把末項(xiàng)寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數(shù)列.

(2)按照項(xiàng)與項(xiàng)之間的大小關(guān)系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動(dòng)數(shù)列、常數(shù)列.

3.數(shù)列的通項(xiàng)公式

數(shù)列是按一定次序排列的一列數(shù),其內(nèi)涵的本質(zhì)屬性是確定這一列數(shù)的規(guī)律,這個(gè)規(guī)律通常是用式子f(n)來表示的。

這兩個(gè)通項(xiàng)公式形式上雖然不同,但表示同一個(gè)數(shù)列,正像每個(gè)函數(shù)關(guān)系不都能用解析式表達(dá)出來一樣,也不是每個(gè)數(shù)列都能寫出它的通項(xiàng)公式;有的數(shù)列雖然有通項(xiàng)公式,但在形式上,又不一定是的,僅僅知道一個(gè)數(shù)列前面的有限項(xiàng),無其他說明,數(shù)列是不能確定的,通項(xiàng)公式更非.如:數(shù)列1,2,3,4,…,

由公式寫出的后續(xù)項(xiàng)就不一樣了,因此,通項(xiàng)公式的歸納不僅要看它的前幾項(xiàng),更要依據(jù)數(shù)列的構(gòu)成規(guī)律,多觀察分析,真正找到數(shù)列的內(nèi)在規(guī)律,由數(shù)列前幾項(xiàng)寫出其通項(xiàng)公式,沒有通用的方法可循.

再強(qiáng)調(diào)對(duì)于數(shù)列通項(xiàng)公式的理解注意以下幾點(diǎn):

(1)數(shù)列的通項(xiàng)公式實(shí)際上是一個(gè)以正整數(shù)集N或它的有限子集{1,2,…,n}為定義域的函數(shù)的表達(dá)式.

(2)如果知道了數(shù)列的通項(xiàng)公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個(gè)數(shù)列的各項(xiàng);同時(shí),用數(shù)列的通項(xiàng)公式也可判斷某數(shù)是否是某數(shù)列中的一項(xiàng),如果是的話,是第幾項(xiàng).

(3)如所有的函數(shù)關(guān)系不一定都有解析式一樣,并不是所有的數(shù)列都有通項(xiàng)公式.

如2的不足近似值,精確到1,0.1,0.01,0.001,0.0001,…所構(gòu)成的數(shù)列1,1.4,1.41,1.414,1.4142,…就沒有通項(xiàng)公式.

(4)有的數(shù)列的通項(xiàng)公式,形式上不一定是的,正如舉例中的:

(5)有些數(shù)列,只給出它的前幾項(xiàng),并沒有給出它的構(gòu)成規(guī)律,那么僅由前面幾項(xiàng)歸納出的數(shù)列通項(xiàng)公式并不.

4.數(shù)列的圖象

對(duì)于數(shù)列4,5,6,7,8,9,10每一項(xiàng)的序號(hào)與這一項(xiàng)有下面的對(duì)應(yīng)關(guān)系:

序號(hào):1234567

項(xiàng):45678910

這就是說,上面可以看成是一個(gè)序號(hào)集合到另一個(gè)數(shù)的集合的映射.因此,從映射、函數(shù)的觀點(diǎn)看,數(shù)列可以看作是一個(gè)定義域?yàn)檎疦(或它的有限子集{1,2,3,…,n})的函數(shù),當(dāng)自變量從小到大依次取值時(shí),對(duì)應(yīng)的一列函數(shù)值.這里的函數(shù)是一種特殊的函數(shù),它的自變量只能取正整數(shù).

由于數(shù)列的項(xiàng)是函數(shù)值,序號(hào)是自變量,數(shù)列的通項(xiàng)公式也就是相應(yīng)函數(shù)和解析式.

數(shù)列是一種特殊的函數(shù),數(shù)列是可以用圖象直觀地表示的.

數(shù)列用圖象來表示,可以以序號(hào)為橫坐標(biāo),相應(yīng)的項(xiàng)為縱坐標(biāo),描點(diǎn)畫圖來表示一個(gè)數(shù)列,在畫圖時(shí),為方便起見,在平面直角坐標(biāo)系兩條坐標(biāo)軸上取的單位長度可以不同,從數(shù)列的圖象表示可以直觀地看出數(shù)列的變化情況,但不精確.

把數(shù)列與函數(shù)比較,數(shù)列是特殊的函數(shù),特殊在定義域是正整數(shù)集或由以1為首的有限連續(xù)正整數(shù)組成的集合,其圖象是無限個(gè)或有限個(gè)孤立的點(diǎn).

5.遞推數(shù)列

一堆鋼管,共堆放了七層,自上而下各層的鋼管數(shù)構(gòu)成一個(gè)數(shù)列:4,5,6,7,8,9,10.①

數(shù)列①還可以用如下方法給出:自上而下第一層的鋼管數(shù)是4,以下每一層的鋼管數(shù)都比上層的鋼管數(shù)多1。

高中數(shù)學(xué)必修1知識(shí)點(diǎn)

2

1.不等式的定義

在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號(hào)連接兩個(gè)數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號(hào)的式子,叫做不等式.

2.比較兩個(gè)實(shí)數(shù)的大小

兩個(gè)實(shí)數(shù)的大小是用實(shí)數(shù)的運(yùn)算性質(zhì)來定義的,

有a-b>0?;a-b=0?;a-b<0?.

另外,若b>0,則有>1?;=1?;<1?.

概括為:作差法,作商法,中間量法等.

3.不等式的性質(zhì)

(1)對(duì)稱性:a>b?;

(2)傳遞性:a>b,b>c?;

(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;

(5)可乘方:a>b>0?(n∈N,n≥2);

(6)可開方:a>b>0?(n∈N,n≥2).

復(fù)習(xí)指導(dǎo)

1.“一個(gè)技巧”作差法變形的技巧:作差法中變形是關(guān)鍵,常進(jìn)行因式分解或配方.

2.“一種方法”待定系數(shù)法:求代數(shù)式的范圍時(shí),先用已知的代數(shù)式表示目標(biāo)式,再利用多項(xiàng)式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標(biāo)式的范圍.

3.“兩條常用性質(zhì)”

(1)倒數(shù)性質(zhì):①a>b,ab>0?<;

②a<0

③a>b>0,0;

④0

(2)若a>b>0,m>0,則

①真分?jǐn)?shù)的性質(zhì):<;>(b-m>0);

②假分?jǐn)?shù)的性質(zhì):>;<(b-m>0).

高中數(shù)學(xué)必修1知識(shí)點(diǎn)3

1.滿足二元一次不等式(組)的x和y的取值構(gòu)成有序數(shù)對(duì)(x,y),稱為二元一次不等式(組)的一個(gè)解,所有這樣的有序數(shù)對(duì)(x,y)構(gòu)成的集合稱為二元一次不等式(組)的解集。

2.二元一次不等式(組)的每一個(gè)解(x,y)作為點(diǎn)的坐標(biāo)對(duì)應(yīng)平面上的一個(gè)點(diǎn),二元一次不等式(組)的解集對(duì)應(yīng)平面直角坐標(biāo)系中的一個(gè)半平面(平面區(qū)域)。

3.直線l:Ax+By+C=0(A、B不全為零)把坐標(biāo)平面劃分成兩部分,其中一部分(半個(gè)平面)對(duì)應(yīng)二元一次不等式Ax+By+C>0(或≥0),另一部分對(duì)應(yīng)二元一次不等式Ax+By+C<0(或≤0)。

4.已知平面區(qū)域,用不等式(組)表示它,其方法是:在所有直線外任取一點(diǎn)(如本題的原點(diǎn)(0,0)),將其坐標(biāo)代入Ax+By+C,判斷正負(fù)就可以確定相應(yīng)不等式。

5.一個(gè)二元一次不等式表示的平面區(qū)域是相應(yīng)直線劃分開的半個(gè)平面,一般用特殊點(diǎn)代入二元一次不等式檢驗(yàn)就可以判定,當(dāng)直線不過原點(diǎn)時(shí)常選原點(diǎn)檢驗(yàn),當(dāng)直線過原點(diǎn)時(shí),常選(1,0)或(0,1)代入檢驗(yàn),二元一次不等式組表示的平面區(qū)域是它的各個(gè)不等式所表示的平面區(qū)域的公共部分,注意邊界是實(shí)線還是虛線的含義?!熬€定界,點(diǎn)定域”。

6.滿足二元一次不等式(組)的整數(shù)x和y的取值構(gòu)成的有序數(shù)對(duì)(x,y),稱為這個(gè)二元一次不等式(組)的一個(gè)解。所有整數(shù)解對(duì)應(yīng)的點(diǎn)稱為整點(diǎn)(也叫格點(diǎn)),它們都在這個(gè)二元一次不等式(組)表示的平面區(qū)域內(nèi)。

7.畫二元一次不等式Ax+By+C≥0所表示的平面區(qū)域時(shí),應(yīng)把邊界畫成實(shí)線,畫二元一次不等式Ax+By+C>0所表示的平面區(qū)域時(shí),應(yīng)把邊界畫成虛線。

8.若點(diǎn)P(x0,y0)與點(diǎn)P1(x1,y1)在直線l:Ax+By+C=0的同側(cè),則Ax0+By0+C與Ax1+Byl+C符號(hào)相同;若點(diǎn)P(x0,y0)與點(diǎn)P1(x1,y1)在直線l:Ax+By+C=0的兩側(cè),則Ax0+By0+C與Ax1+Byl+C符號(hào)相反。

9.從實(shí)際問題中抽象出二元一次不等式(組)的步驟是:

(1)根據(jù)題意,設(shè)出變量;

(2)分析問題中的變量,并根據(jù)各個(gè)不等關(guān)系列出常量與變量x,y之間的不等式;

(3)把各個(gè)不等式連同變量x,y有意義的實(shí)際范圍合在一起,組成不等式組。

學(xué)好高中數(shù)學(xué)的方法有哪些

理解知識(shí)放首位。

比如:學(xué)數(shù)學(xué)集合的時(shí)候,怎么理解交、并、補(bǔ)呢?交、并、補(bǔ)是運(yùn)算,而運(yùn)算要定義在某個(gè)集合之上,所以交、并、補(bǔ)這三種運(yùn)算定義在哪個(gè)集合之上呢?我們把所有的集合放在一起,構(gòu)成一個(gè)集合(這個(gè)集合里的元素是集合,還要注意:我們約定采用ZFC公理體系,其中的正則公理可以將“羅素悖論”排除在外.下文不再重復(fù)這個(gè)約定),記為M,交、并、補(bǔ)就是定義在集合M上的運(yùn)算。而運(yùn)算首先要滿足封閉性,所以這三種運(yùn)算的結(jié)果,都是一個(gè)集合。

既然談到運(yùn)算,怎么能不討論運(yùn)算律呢?例如,

數(shù)學(xué)集合的交滿足交換律、結(jié)合律;集合的交對(duì)并滿足分配律;集合的補(bǔ)對(duì)交滿足德摩根律……這些都是需要搞清楚的問題。有同學(xué)覺得給定一種二元運(yùn)算,交換律、結(jié)合律都會(huì)天然滿足,大錯(cuò)特錯(cuò)啊。例如,實(shí)數(shù)的減法既不滿足交換律,也不滿足結(jié)合律;函數(shù)的復(fù)合滿足結(jié)合律,不滿足交換律;向量的內(nèi)積滿足交換律,不滿足結(jié)合律;命題的或既滿足交換律,也滿足結(jié)合律.

這些知識(shí)聽上去有點(diǎn)“虛”,但其實(shí)是數(shù)學(xué)的精華所在。

高中數(shù)學(xué)必修1知識(shí)點(diǎn)總結(jié)相關(guān)文章:

高一數(shù)學(xué)必修一知識(shí)點(diǎn)匯總

高一數(shù)學(xué)必修1知識(shí)點(diǎn)歸納

高中數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

高中數(shù)學(xué)必修一知識(shí)點(diǎn)框架圖

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)歸納

高中數(shù)學(xué)必修一復(fù)習(xí)提綱

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【必修一】

高中數(shù)學(xué)高一數(shù)學(xué)必修一知識(shí)點(diǎn)

高中數(shù)學(xué)高一數(shù)學(xué)必修一知識(shí)點(diǎn)與學(xué)習(xí)方法

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

778810