国产成人v爽在线免播放观看,日韩欧美色,久久99国产精品久久99软件,亚洲综合色网站,国产欧美日韩中文久久,色99在线,亚洲伦理一区二区

學習啦>學習方法>高中學習方法>高一學習方法>高一數(shù)學>

高中必修一數(shù)學知識點歸納

時間: 維維0 分享

考試是檢測學生學習效果的重要手段和方法,考前需要做好各方面的知識儲備,對于數(shù)學更加要進行復習歸納。下面給大家?guī)硪恍╆P于高中必修一數(shù)學知識點歸納,希望對大家有所幫助。

高中必修一數(shù)學知識點歸納1

三角函數(shù)公式

兩角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

積化和差 2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

和差化積 sinA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB

tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgB=sin(A+B)/sinAsinB

-ctgA+ctgB=sin(A+B)/sinAsin

高中必修一數(shù)學知識點歸納2

集合與函數(shù)概念

一,集合有關概念

1,集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素.

2,集合的中元素的三個特性:

1.元素的確定性; 2.元素的互異性; 3.元素的無序性

說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素.

(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素.

(3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣.

(4)集合元素的三個特性使集合本身具有了確定性和整體性.3,集合的表示:{ … } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

1. 用拉丁字母表示集合:a={我校的籃球隊員},b={1,2,3,4,5}

2.集合的表示方法:列舉法與描述法.

注意啊:常用數(shù)集及其記法:

非負整數(shù)集(即自然數(shù)集) 記作:n

正整數(shù)集 n-或 n+ 整數(shù)集z 有理數(shù)集q 實數(shù)集r

關于"屬于"的概念

集合的元素通常用小寫的拉丁字母表示,如:a是集合a的元素,就說a屬于集合a 記作 a∈a ,相反,a不屬于集合a 記作 a(a

列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上.

描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法.用確定的條件表示某些對象是否屬于這個集合的方法.

①語言描述法:例:{不是直角三角形的三角形}

②數(shù)學式子描述法:例:不等式x-3]2的解集是{x(r| x-3]2}或{x| x-3]2}

4,集合的分類:

1.有限集 含有有限個元素的集合

2.無限集 含有無限個元素的集合

3.空集 不含任何元素的集合 例:{x|x2=-5}

二,集合間的基本關系

1."包含"關系—子集

注意:有兩種可能(1)a是b的一部分,;(2)a與b是同一集合.

反之: 集合a不包含于集合b,或集合b不包含集合a,記作ab或ba

2."相等"關系(5≥5,且5≤5,則5=5)

實例:設 a={x|x2-1=0} b={-1,1} "元素相同"

結(jié)論:對于兩個集合a與b,如果集合a的任何一個元素都是集合b的元素,同時,集合b的任何一個元素都是集合a的元素,我們就說集合a等于集合b,即:a=b

① 任何一個集合是它本身的子集.a(a

②真子集:如果a(b,且a( b那就說集合a是集合b的真子集,記作ab(或ba)

③如果 a(b, b(c ,那么 a(c

④ 如果a(b 同時 b(a 那么a=b

3. 不含任何元素的集合叫做空集,記為φ

規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集.

三,集合的運算

1.交集的定義:一般地,由所有屬于a且屬于b的元素所組成的集合,叫做a,b的交集.

記作a∩b(讀作"a交b"),即a∩b={x|x∈a,且x∈b}.

2,并集的定義:一般地,由所有屬于集合a或?qū)儆诩蟗的元素所組成的集合,叫做a,b的并集.記作:a∪b(讀作"a并b"),即a∪b={x|x∈a,或x∈b}.

3,交集與并集的性質(zhì):a∩a = a, a∩φ= φ, a∩b = b∩a,a∪a = a,a∪φ= a ,a∪b = b∪a.

4,全集與補集

(1)補集:設s是一個集合,a是s的一個子集(即),由s中所有不屬于a的元素組成的集合,叫做s中子集a的補集(或余集)

記作: csa 即 csa ={x ( x(s且 x(a}

(2)全集:如果集合s含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集.通常用u來表示.

(3)性質(zhì):⑴cu(c ua)=a ⑵(c ua)∩a=φ ⑶(cua)∪a=u

高中必修一數(shù)學知識點歸納3

某些數(shù)列前n項和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1-2+2-3+3-4+4-5+5-6+6-7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑

余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角

弧長公式 l=a-r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2-l-r

乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根與系數(shù)的關系 X1+X2=-b/a X1-X2=c/a 注:韋達定理

高中必修一數(shù)學知識點歸納4

【基本初等函數(shù)】

一、指數(shù)函數(shù)

(一)指數(shù)與指數(shù)冪的運算

1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

當是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負數(shù)的次方根是一個負數(shù).此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).

當是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù).此時,正數(shù)的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數(shù)沒有偶次方根;0的任何次方根都是0,記作。

注意:當是奇數(shù)時,當是偶數(shù)時,

2.分數(shù)指數(shù)冪

正數(shù)的分數(shù)指數(shù)冪的意義,規(guī)定:

0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義

指出:規(guī)定了分數(shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.

3.實數(shù)指數(shù)冪的運算性質(zhì)

(二)指數(shù)函數(shù)及其性質(zhì)

1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R.

注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負數(shù)、零和1.

2、指數(shù)函數(shù)的圖象和性質(zhì)

【函數(shù)的應用】

1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。

2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。即:

方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.

3、函數(shù)零點的求法:

求函數(shù)的零點:

1(代數(shù)法)求方程的實數(shù)根;

2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.

4、二次函數(shù)的零點:

二次函數(shù).

1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.

2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.

3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.

高中必修一數(shù)學知識點歸納相關文章

高中數(shù)學必修一知識點總結(jié)

高一數(shù)學必修一知識點匯總

高一數(shù)學必修一知識點總結(jié)歸納

高一數(shù)學必修一知識點總結(jié)

高中數(shù)學必修一知識點框架圖

高一數(shù)學必修1知識點歸納

高中數(shù)學高一數(shù)學必修一知識點

高中數(shù)學必修一復習提綱

高中數(shù)學高一數(shù)學必修一知識點與學習方法

高中必修一數(shù)學知識點歸納

考試是檢測學生學習效果的重要手段和方法,考前需要做好各方面的知識儲備,對于數(shù)學更加要進行復習歸納。下面給大家?guī)硪恍╆P于高中必修一數(shù)學知識點歸納,希望對大家有所幫助。高中必修一數(shù)學知識點歸納1三角函數(shù)
推薦度:
點擊下載文檔文檔為doc格式
782274