九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)梳理
不渴望能夠一躍千里,只希望每天能夠前進(jìn)一步。每一門科目都有自己的學(xué)習(xí)方法,但其實(shí)都是萬變不離其中的,數(shù)學(xué)其實(shí)和語文英語一樣,也是要記、要背、要練的。下面是小編給大家整理的一些九年級(jí)數(shù)學(xué)的知識(shí)點(diǎn),希望對(duì)大家有所幫助。
初三年級(jí)下學(xué)期數(shù)學(xué)知識(shí)點(diǎn)
【反比例函數(shù)】
形如y=k/x(k為常數(shù)且k≠0,x≠0,y≠0)的函數(shù),叫做反比例函數(shù)。
自變量x的取值范圍是不等于0的一切實(shí)數(shù)。
反比例函數(shù)圖像性質(zhì):
反比例函數(shù)的圖像為雙曲線。
由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對(duì)稱。
另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個(gè)坐標(biāo)軸作垂線,這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。
當(dāng)K>0時(shí),反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)(即y隨x的增大而減小)
當(dāng)K<0時(shí),反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)(即y隨x的增大而增大)
由于反比例函數(shù)的自變量和因變量都不能為0,所以圖像只能無限向坐標(biāo)軸靠近,無法和坐標(biāo)軸相交。
1.過反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。
2.對(duì)于雙曲線y=k/x,若在分母上加減任意一個(gè)實(shí)數(shù)(即y=k/x(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個(gè)單位。(加一個(gè)數(shù)時(shí)向左平移,減一個(gè)數(shù)時(shí)向右平移)
初三年級(jí)數(shù)學(xué)知識(shí)點(diǎn)歸納
【二次函數(shù)】
知識(shí)點(diǎn)一、平面直角坐標(biāo)系
1,平面直角坐標(biāo)系
在平面內(nèi)畫兩條互相垂直且有公共原點(diǎn)的數(shù)軸,就組成了平面直角坐標(biāo)系。
其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸的交點(diǎn)O(即公共的原點(diǎn))叫做直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。
為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個(gè)部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(diǎn),不屬于任何象限。
2、點(diǎn)的坐標(biāo)的概念
點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開,橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對(duì),當(dāng)時(shí),(a,b)和(b,a)是兩個(gè)不同點(diǎn)的坐標(biāo)。
知識(shí)點(diǎn)二、不同位置的點(diǎn)的坐標(biāo)的特征
1、各象限內(nèi)點(diǎn)的坐標(biāo)的特征
點(diǎn)P(x,y)在第一象限
點(diǎn)P(x,y)在第二象限
點(diǎn)P(x,y)在第三象限
點(diǎn)P(x,y)在第四象限
2、坐標(biāo)軸上的點(diǎn)的特征
點(diǎn)P(x,y)在x軸上,x為任意實(shí)數(shù)
點(diǎn)P(x,y)在y軸上,y為任意實(shí)數(shù)
點(diǎn)P(x,y)既在x軸上,又在y軸上x,y同時(shí)為零,即點(diǎn)P坐標(biāo)為(0,0)
3、兩條坐標(biāo)軸夾角平分線上點(diǎn)的坐標(biāo)的特征
點(diǎn)P(x,y)在第一、三象限夾角平分線上x與y相等
點(diǎn)P(x,y)在第二、四象限夾角平分線上x與y互為相反數(shù)
4、和坐標(biāo)軸平行的直線上點(diǎn)的坐標(biāo)的特征
位于平行于x軸的直線上的各點(diǎn)的縱坐標(biāo)相同。
位于平行于y軸的直線上的各點(diǎn)的橫坐標(biāo)相同。
5、關(guān)于x軸、y軸或遠(yuǎn)點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的特征
點(diǎn)P與點(diǎn)p’關(guān)于x軸對(duì)稱橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù)
點(diǎn)P與點(diǎn)p’關(guān)于y軸對(duì)稱縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù)
點(diǎn)P與點(diǎn)p’關(guān)于原點(diǎn)對(duì)稱橫、縱坐標(biāo)均互為相反數(shù)
6、點(diǎn)到坐標(biāo)軸及原點(diǎn)的距離
點(diǎn)P(x,y)到坐標(biāo)軸及原點(diǎn)的距離:
(1)點(diǎn)P(x,y)到x軸的距離等于
(2)點(diǎn)P(x,y)到y(tǒng)軸的距離等于
(3)點(diǎn)P(x,y)到原點(diǎn)的距離等于
初三年級(jí)數(shù)學(xué)知識(shí)點(diǎn)匯總
【旋轉(zhuǎn)】
一.知識(shí)框架
二.知識(shí)概念
1.旋轉(zhuǎn):在平面內(nèi),將一個(gè)圖形繞一個(gè)圖形按某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的運(yùn)動(dòng)叫做圖形的旋轉(zhuǎn)。這個(gè)定點(diǎn)叫做旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角度叫做旋轉(zhuǎn)角。(圖形的旋轉(zhuǎn)是圖形上的每一點(diǎn)在平面上繞著某個(gè)固定點(diǎn)旋轉(zhuǎn)固定角度的位置移動(dòng),其中對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對(duì)應(yīng)線段的長度、對(duì)應(yīng)角的大小相等,旋轉(zhuǎn)前后圖形的大小和形狀沒有改變。)
2.旋轉(zhuǎn)對(duì)稱中心:把一個(gè)圖形繞著一個(gè)定點(diǎn)旋轉(zhuǎn)一個(gè)角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對(duì)稱圖形,這個(gè)定點(diǎn)叫做旋轉(zhuǎn)對(duì)稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角(旋轉(zhuǎn)角小于0°,大于360°)。
3.中心對(duì)稱圖形與中心對(duì)稱:
中心對(duì)稱圖形:如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個(gè)圖形成中心對(duì)稱圖形。
中心對(duì)稱:如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與另一個(gè)圖形重合,那么我們就說,這兩個(gè)圖形成中心對(duì)稱。
4.中心對(duì)稱的性質(zhì):
關(guān)于中心對(duì)稱的兩個(gè)圖形是全等形。
關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分。
關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)應(yīng)線段平行(或者在同一直線上)且相等。
本章內(nèi)容通過讓學(xué)生經(jīng)歷觀察、操作等過程了解旋轉(zhuǎn)的概念,探索旋轉(zhuǎn)的性質(zhì),進(jìn)一步發(fā)展空間觀察,培養(yǎng)幾何思維和審美意識(shí),在實(shí)際問題中體驗(yàn)數(shù)學(xué)的快樂,激發(fā)對(duì)學(xué)習(xí)學(xué)習(xí)。
九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)梳理相關(guān)文章:
★ 人教版九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)歸納
★ 九年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納整理
★ 初三數(shù)學(xué)知識(shí)點(diǎn)考點(diǎn)歸納總結(jié)
★ 初三數(shù)學(xué)知識(shí)點(diǎn)歸納人教版
★ 初三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)
★ 九年級(jí)數(shù)學(xué)上冊(cè)重要知識(shí)點(diǎn)總結(jié)
★ 初三數(shù)學(xué)知識(shí)點(diǎn)整理
★ 初三數(shù)學(xué)知識(shí)點(diǎn)歸納