初三數(shù)學(xué)知識(shí)點(diǎn)整理
學(xué)習(xí)的成功與失敗原因是多方面的,要首先從自己身上找原因,才能受到鼓舞,找出努力的方向。每一門科目都有自己的學(xué)習(xí)方法,但其實(shí)都是萬(wàn)變不離其中的,數(shù)學(xué)其實(shí)和語(yǔ)文英語(yǔ)一樣,也是要記、要背、要練的。下面是小編給大家整理的初三數(shù)學(xué)知識(shí)點(diǎn),希望對(duì)大家有所幫助。
初三年級(jí)下學(xué)期數(shù)學(xué)知識(shí)點(diǎn)
【二次函數(shù)的圖像與性質(zhì)】
二次函數(shù)的概念:一般地,形如ax^2+bx+c=0的函數(shù),叫做二次函數(shù)。
這里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù)a≠0,而b,c可以為零.二次函數(shù)的定義域是全體實(shí)數(shù).
二次函數(shù)圖像與性質(zhì)口訣
二次函數(shù)拋物線,圖象對(duì)稱是關(guān)鍵;
開(kāi)口、頂點(diǎn)和交點(diǎn),它們確定圖象限;
開(kāi)口、大小由a斷,c與Y軸來(lái)相見(jiàn),b的符號(hào)較特別,符號(hào)與a相關(guān)聯(lián);頂點(diǎn)位置先找見(jiàn),Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點(diǎn)坐標(biāo)最重要,一般式配方它就現(xiàn),橫標(biāo)即為對(duì)稱軸,縱標(biāo)函數(shù)最值見(jiàn)。若求對(duì)稱軸位置,符號(hào)反,一般、頂點(diǎn)、交點(diǎn)式,不同表達(dá)能互換。
【二次函數(shù)的應(yīng)用】
在公路、橋梁、隧道、城市建設(shè)等很多方面都有拋物線型;生產(chǎn)和生活中,有很多“利潤(rùn)”、“用料最少”、“開(kāi)支最節(jié)約”、“線路最短”、“面積”等問(wèn)題,它們都有可能用到二次函數(shù)關(guān)系,用到二次函數(shù)的最值。
那么解決這類問(wèn)題的一般步驟是:
第一步:設(shè)自變量;
第二步:建立函數(shù)解析式;
第三步:確定自變量取值范圍;
第四步:根據(jù)頂點(diǎn)坐標(biāo)公式或配方法求出最值(在自變量的取值范圍內(nèi))。
初三年級(jí)數(shù)學(xué)知識(shí)點(diǎn)
【函數(shù)的圖像與一元二次方程】
1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同
當(dāng)h>0時(shí),y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動(dòng)h個(gè)單位得到,
當(dāng)h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.
當(dāng)h>0,k>0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;
當(dāng)h>0,k<0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當(dāng)h<0,k>0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當(dāng)h<0,k<0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;
因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了.這給畫(huà)圖象提供了方便.
2.拋物線y=ax^2+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開(kāi)口向上,當(dāng)a<0時(shí)開(kāi)口向下,對(duì)稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2]/4a).
3.拋物線y=ax^2+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時(shí),y隨x的增大而減小;當(dāng)x≥-b/2a時(shí),y隨x的增大而增大.若a<0,當(dāng)x≤-b/2a時(shí),y隨x的增大而增大;當(dāng)x≥-b/2a時(shí),y隨x的增大而減小.
4.拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):
(1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);
(2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點(diǎn)間的距離AB=|x?-x?|
當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);
當(dāng)△<0.圖象與x軸沒(méi)有交點(diǎn).當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0.
5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當(dāng)x=-b/2a時(shí),y最小(大)值=(4ac-b^2)/4a.
頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值.
6.用待定系數(shù)法求二次函數(shù)的解析式
(1)當(dāng)題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:
y=ax^2+bx+c(a≠0).
(2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)^2+k(a≠0).
(3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).
初三年級(jí)數(shù)學(xué)知識(shí)點(diǎn)蘇科版
一.知識(shí)框架
二.知識(shí)概念
1.圓:平面上到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱為圓心,定長(zhǎng)稱為半徑。
2.圓弧和弦:圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意
意兩點(diǎn)的線段叫做弦。經(jīng)過(guò)圓心的弦叫做直徑。
3.圓心角和圓周角:頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。
4.內(nèi)心和外心:過(guò)三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個(gè)三角形的內(nèi)切圓,其圓心稱為內(nèi)心。
5.扇形:在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形。
6.圓錐側(cè)面展開(kāi)圖是一個(gè)扇形。這個(gè)扇形的半徑稱為圓錐的母線。
7.圓和點(diǎn)的位置關(guān)系:以點(diǎn)P與圓O的為例(設(shè)P是一點(diǎn),則PO是點(diǎn)到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO
8.直線與圓有3種位置關(guān)系:無(wú)公共點(diǎn)為相離;有兩個(gè)公共點(diǎn)為相交,這條直線叫做圓的割線;圓與直線有公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)的公共點(diǎn)叫做切點(diǎn)。
9.兩圓之間有5種位置關(guān)系:無(wú)公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有兩個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r
10.切線的判定方法:經(jīng)過(guò)半徑外端并且垂直于這條半徑的直線是圓的切線。
11.切線的性質(zhì):(1)經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線是圓的切線。(2)經(jīng)過(guò)切點(diǎn)垂直于切線的直線必經(jīng)過(guò)圓心。(3)圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑。
12.垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧。
13.有關(guān)定理:
平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧.
在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等.
在同圓或等圓中,同弧等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.
半圓(或直徑)所對(duì)的圓周角是直角,90°的圓周角所對(duì)的弦是直徑.
14.圓的計(jì)算公式1.圓的周長(zhǎng)C=2πr=πd2.圓的面積S=πr^2;3.扇形弧長(zhǎng)l=nπr/180
15.扇形面積S=π(R^2-r^2)5.圓錐側(cè)面積S=πrl
初三數(shù)學(xué)學(xué)習(xí)方法
1、課前認(rèn)真預(yù)習(xí)。預(yù)習(xí)的目的是為了能更好得聽(tīng)老師講課,通過(guò)預(yù)習(xí),掌握度要達(dá)到百分之八十。帶著預(yù)習(xí)中不明白的問(wèn)題去聽(tīng)老師講課,來(lái)解答這類的問(wèn)題。預(yù)習(xí)還可以使聽(tīng)課的整體效率提高。具體的預(yù)習(xí)方法:將書(shū)上的題目做完,畫(huà)出知識(shí)點(diǎn),整個(gè)過(guò)程大約持續(xù)15-20分……在時(shí)間允許的情況下,還可以將練習(xí)冊(cè)做完。
2、讓數(shù)學(xué)課學(xué)與練結(jié)合。在數(shù)學(xué)課上,光聽(tīng)是沒(méi)用的。當(dāng)老師讓同學(xué)去黑板上演算時(shí),自己也要在草稿紙上練。如果遇到不懂的難題,一定要提出來(lái),不能不求甚解.否則考試遇到類似的題目就可能不會(huì)做。聽(tīng)老師講課時(shí)一定要全神貫注,要注意細(xì)節(jié)問(wèn)題,否則“千里之堤,毀于蟻穴”。
3、課后及時(shí)復(fù)習(xí)。寫(xiě)完作業(yè)后對(duì)當(dāng)天老師講的內(nèi)容進(jìn)行梳理,可以適當(dāng)?shù)刈?5分鐘左右的課外題??梢愿鶕?jù)自己的需要選擇適合自己的課外書(shū)。其課外題內(nèi)容大概就是今天上的課。
初三數(shù)學(xué)知識(shí)點(diǎn)整理歸納相關(guān)文章:
★ 初三數(shù)學(xué)知識(shí)點(diǎn)考點(diǎn)歸納總結(jié)
★ 初三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)
★ 初三數(shù)學(xué)知識(shí)點(diǎn)歸納人教版
★ 初三數(shù)學(xué)知識(shí)點(diǎn)上冊(cè)總結(jié)歸納
★ 初三數(shù)學(xué)知識(shí)點(diǎn)歸納
★ 初三數(shù)學(xué)中考復(fù)習(xí)重點(diǎn)章節(jié)知識(shí)點(diǎn)歸納
★ 初三數(shù)學(xué)知識(shí)點(diǎn)整理
★ 最新初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)大全