九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)整理下冊(cè)
課堂臨時(shí)報(bào)佛腳,不如課前預(yù)習(xí)好。其實(shí)任何學(xué)科都是一樣的,學(xué)習(xí)任何一門學(xué)科,勤奮都是最好的學(xué)習(xí)方法,沒(méi)有之一,書山有路勤為徑。下面是小編給大家整理的一些九年級(jí)數(shù)學(xué)的知識(shí)點(diǎn),希望對(duì)大家有所幫助。
初三下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2021
半徑與弦長(zhǎng)計(jì)算,弦心距來(lái)中間站。圓上若有一切線,切點(diǎn)圓心半徑連。
切線長(zhǎng)度的計(jì)算,勾股定理最方便。要想證明是切線,半徑垂線仔細(xì)辨。
是直徑,成半圓,想成直角徑連弦?;∮兄悬c(diǎn)圓心連,垂徑定理要記全。
圓周角邊兩條弦,直徑和弦端點(diǎn)連。弦切角邊切線弦,同弧對(duì)角等找完。
要想作個(gè)外接圓,各邊作出中垂線。還要作個(gè)內(nèi)接圓,內(nèi)角平分線夢(mèng)圓。
如果遇到相交圓,不要忘作公共弦。內(nèi)外相切的兩圓,經(jīng)過(guò)切點(diǎn)公切線。
若是添上連心線,切點(diǎn)肯定在上面。要作等角添個(gè)圓,證明題目少困難。
輔助線,是虛線,畫圖注意勿改變。假如圖形較分散,對(duì)稱旋轉(zhuǎn)去實(shí)驗(yàn)。
基本作圖很關(guān)鍵,平時(shí)掌握要熟練。解題還要多心眼,經(jīng)??偨Y(jié)方法顯。
切勿盲目亂添線,方法靈活應(yīng)多變。分析綜合方法選,困難再多也會(huì)減。
虛心勤學(xué)加苦練,成績(jī)上升成直線。
九年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
直線與圓的位置關(guān)系
①直線和圓無(wú)公共點(diǎn),稱相離。AB與圓O相離,d>r。
②直線和圓有兩個(gè)公共點(diǎn),稱相交,這條直線叫做圓的割線。AB與⊙O相交,d
③直線和圓有且只有一公共點(diǎn),稱相切,這條直線叫做圓的切線,這個(gè)的公共點(diǎn)叫做切點(diǎn)。AB與⊙O相切,d=r。(d為圓心到直線的距離)
平面內(nèi),直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的方程
如果b^2-4ac>0,則圓與直線有2交點(diǎn),即圓與直線相交。
如果b^2-4ac=0,則圓與直線有1交點(diǎn),即圓與直線相切。
如果b^2-4ac<0,則圓與直線有0交點(diǎn),即圓與直線相離。
2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時(shí)的兩個(gè)x值x1、x2,并且規(guī)定x1
當(dāng)x=-C/Ax2時(shí),直線與圓相離;
旋轉(zhuǎn)變換
1.概念:在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)叫做旋轉(zhuǎn)。
說(shuō)明:(1)圖形的旋轉(zhuǎn)是由旋轉(zhuǎn)中心和旋轉(zhuǎn)的角度所決定的;(2)旋轉(zhuǎn)過(guò)程中旋轉(zhuǎn)中心始終保持不動(dòng).(3)旋轉(zhuǎn)過(guò)程中旋轉(zhuǎn)的方向是相同的.(4)旋轉(zhuǎn)過(guò)程靜止時(shí),圖形上一個(gè)點(diǎn)的旋轉(zhuǎn)角度是一樣的.⑤旋轉(zhuǎn)不改變圖形的大小和形狀.
2.性質(zhì):(1)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;
(2)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;
(3)旋轉(zhuǎn)前、后的圖形全等.
3.旋轉(zhuǎn)作圖的步驟和方法:(1)確定旋轉(zhuǎn)中心及旋轉(zhuǎn)方向、旋轉(zhuǎn)角;(2)找出圖形的關(guān)鍵點(diǎn);(3)將圖形的關(guān)鍵點(diǎn)和旋轉(zhuǎn)中心連接起來(lái),然后按旋轉(zhuǎn)方向分別將它們旋轉(zhuǎn)一個(gè)旋轉(zhuǎn)角度數(shù),得到這些關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn);(4)按原圖形順次連接這些對(duì)應(yīng)點(diǎn),所得到的圖形就是旋轉(zhuǎn)后的圖形.
說(shuō)明:在旋轉(zhuǎn)作圖時(shí),一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的夾角即為旋轉(zhuǎn)角.
九年級(jí)數(shù)學(xué)學(xué)習(xí)方法技巧
讀題時(shí)候的認(rèn)真也是很重要的,想必大家都有這樣的經(jīng)歷,在做題的時(shí)候,做了半天都沒(méi)做出來(lái),也許是不經(jīng)意的瞥了一下題目,或者是老師同學(xué)的提醒,突然發(fā)現(xiàn)出現(xiàn)了某某條件或者某某關(guān)系。于是題目很快就輕易解決,審題不清往往會(huì)導(dǎo)致錯(cuò)誤的結(jié)果,或者浪費(fèi)時(shí)間,特別是在考試中,浪費(fèi)了時(shí)間就很可能做不完題目,導(dǎo)致丟分。
全面全力夯實(shí)基礎(chǔ):切實(shí)掌握選擇填空題的解題規(guī)律,在歷次測(cè)驗(yàn)中確?;A(chǔ)部分得滿分,也就是把該得的分?jǐn)?shù)確實(shí)滿分拿到手。在一輪復(fù)習(xí)中,所有同學(xué)都要集中全力闖過(guò)選擇填空題的基礎(chǔ)關(guān),否則在高考中很難越過(guò)一百分?,F(xiàn)實(shí)中,很多同學(xué)從一開始便投入到漫無(wú)目的的、五花八門的、各式各樣的題海中。為了在一輪復(fù)習(xí)中達(dá)到此目的,基礎(chǔ)稍差些的同學(xué)完全可以主動(dòng)放棄大型的、復(fù)雜的綜合體的演練,把節(jié)省下來(lái)的時(shí)間和精力再次投入到選擇填空題上來(lái),以此進(jìn)一步夯實(shí)基礎(chǔ);而基礎(chǔ)好一些的同學(xué),也不要把太多的、主要的精力大面積地投入到解答題上來(lái),而是要分專題、分階段每天都少量地但是細(xì)致地深入地研究一兩道大解答題,在解答題上慢慢地、逐步地積累解題經(jīng)驗(yàn)和解題規(guī)律,切不可把攤子鋪大。要知道解答題的解題經(jīng)驗(yàn)和解題規(guī)律積累是一個(gè)逐步的、漫漫的由量變到質(zhì)變的過(guò)程,堅(jiān)持重于沖擊。
多看例題:細(xì)心的朋友會(huì)發(fā)現(xiàn),老師在講解基礎(chǔ)內(nèi)容之后,總是給我們補(bǔ)充一些課外例、習(xí)題,這是大有裨益的,我們學(xué)的概念、定理,一般較抽象,要把它們具體化,就需要把它們運(yùn)用在題目中,由于我們剛接觸到這些知識(shí),運(yùn)用起來(lái)還不夠熟練,這時(shí),例題就幫了我們大忙,我們可以在看例題的過(guò)程中,將頭腦中已有的概念具體化,使對(duì)知識(shí)的理解更深刻,更透徹,由于老師補(bǔ)充的例題十分有限,所以我們還應(yīng)自己找一些來(lái)看,看例題,還要注意以下幾點(diǎn):
不能只看皮毛,不看內(nèi)涵,我們看例題,就是要真正掌握其方法,建立起更寬的解題思路,如果看一道就是一道,只記題目不記方法,看例題也就失去了它本來(lái)的意義,每看一道題目,就應(yīng)理清它的思路,掌握它的思維方法,再遇到類似的題目或同類型的題目,心中有了大概的印象,做起來(lái)也就容易了,不過(guò)要強(qiáng)調(diào)一點(diǎn),除非有十分的把握,否則不要憑借主觀臆斷,那樣會(huì)犯經(jīng)驗(yàn)主義錯(cuò)誤,走進(jìn)死胡同的。
九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)整理下冊(cè)相關(guān)文章:
★ 九年級(jí)數(shù)學(xué)下冊(cè)圓的知識(shí)點(diǎn)整理
★ 人教版九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)歸納
★ 初中數(shù)學(xué)下冊(cè)知識(shí)歸納
★ 初三數(shù)學(xué)知識(shí)點(diǎn)考點(diǎn)歸納總結(jié)
★ 初三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)
★ 最新初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)大全
★ 初三數(shù)學(xué)知識(shí)點(diǎn)歸納人教版
★ 初三數(shù)學(xué)知識(shí)點(diǎn)整理