初三數學知識點總結蘇教版
知識是取之不盡,用之不竭的。只有限度地挖掘它,才能體會到學習的樂趣。任何一門學科的知識都需要大量的記憶和練習來鞏固。雖然辛苦,但也伴隨著快樂!下面是小編給大家整理的一些初三數學的知識點,希望對大家有所幫助。
初三下冊數學知識點總結2021
半徑與弦長計算,弦心距來中間站。圓上若有一切線,切點圓心半徑連。
切線長度的計算,勾股定理最方便。要想證明是切線,半徑垂線仔細辨。
是直徑,成半圓,想成直角徑連弦?;∮兄悬c圓心連,垂徑定理要記全。
圓周角邊兩條弦,直徑和弦端點連。弦切角邊切線弦,同弧對角等找完。
要想作個外接圓,各邊作出中垂線。還要作個內接圓,內角平分線夢圓。
如果遇到相交圓,不要忘作公共弦。內外相切的兩圓,經過切點公切線。
若是添上連心線,切點肯定在上面。要作等角添個圓,證明題目少困難。
輔助線,是虛線,畫圖注意勿改變。假如圖形較分散,對稱旋轉去實驗。
基本作圖很關鍵,平時掌握要熟練。解題還要多心眼,經??偨Y方法顯。
切勿盲目亂添線,方法靈活應多變。分析綜合方法選,困難再多也會減。
虛心勤學加苦練,成績上升成直線。
九年級上冊數學復習資料
1、概念:
把一個圖形繞著某一點O轉動一個角度的圖形變換叫做旋轉,點O叫做旋轉中心,轉動的角叫做旋轉角.
旋轉三要素:旋轉中心、旋轉方面、旋轉角
2、旋轉的性質:
(1)旋轉前后的兩個圖形是全等形;
(2)兩個對應點到旋轉中心的距離相等
(3)兩個對應點與旋轉中心的連線段的夾角等于旋轉角
3、中心對稱:
把一個圖形繞著某一個點旋轉180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這個點對稱或中心對稱,這個點叫做對稱中心.
這兩個圖形中的對應點叫做關于中心的對稱點.
4、中心對稱的性質:
(1)關于中心對稱的兩個圖形,對稱點所連線段都經過對稱中心,而且被對稱中心所平分.
(2)關于中心對稱的兩個圖形是全等圖形.
5、中心對稱圖形:
把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。
重視構建知識網絡——宏觀把握數學框架
要學會構建知識網絡,數學概念是構建知識網絡的出發(fā)點,也是數學中考[微博]考查的重點。因此,我們要掌握好代數中的數、式、不等式、方程、函數、三角比、統(tǒng)計和幾何中的平行線、三角形、四邊形、圓的概念、分類、定義、性質和判定,并會應用這些概念去解決一些問題。
重視夯實數學雙基——微觀掌握知識技能
在復習過程中夯實數學基礎,要注意知識的不斷深化,重視強化題組訓練——感悟數學思想方法
除了做基礎訓練題、平面幾何每日一題外,還可以做一些綜合題,并且養(yǎng)成解題后反思的習慣。反思自己的思維過程,反思知識點和解題技巧,反思多種解法的優(yōu)劣,反思各種方法的縱橫聯系。而總結出它所用到的數學思想方法,并把思想方法相近的題目編成一組,不斷提煉、不斷深化,做到舉一反三、觸類旁通。逐步學會觀察、試驗、分析、猜想、歸納、類比、聯想等思想方法,主動地發(fā)現問題和提出問題。
重視建立“病例檔案”——做到萬無一失
準備一本數學學習“病例卡”,把平時犯的錯誤記下來,找出“病因”開出“處方”,并且經常地拿出來看看、想想錯在哪里,為什么會錯,怎么改正,這樣到中考時你的數學就沒有什么“病例”了。我們要在教師的指導下做一定數量的數學習題,積累解題經驗、總結解題思路、形成解題思想、催生解題靈感、掌握學習方法。
重視常用公式技巧——做到思維敏捷準確
對經常使用的數學公式要理解來龍去脈,要進一步了解其推理過程,并對推導過程中產生的一些可能變化自行探究。對今后繼續(xù)學習所必須的知識和技能,對生活實際經常用到的常識,也要進行必要的訓練。例如:1-20的平方數;簡單的勾股數;正三角形的面積公式以及高和邊長的關系;30°、45°直角三角形三邊的關系……這樣做,一定能更好地掌握公式并勝過做大量習題,而且往往會有意想不到的效果。
重視中考動向要求——勤練解題規(guī)范速度
要把握好目前的中考動向,特別是近年來上海的中考越來越注重解題過程的規(guī)范和解答過程的完整。在此特別指出的是,有很多學生認為只要解出題目的答案就萬事大吉了,其實只要是有過程的解答題,過程分比最后的答案要重要得多,不要會做而不得分。
初三數學知識點總結蘇教版相關文章:
★ 復習方法
初三數學知識點總結蘇教版
上一篇:人教版初三數學知識點歸納整理
下一篇:滬教版九年級數學知識點