国产成人v爽在线免播放观看,日韩欧美色,久久99国产精品久久99软件,亚洲综合色网站,国产欧美日韩中文久久,色99在线,亚洲伦理一区二区

學習啦>學習方法>初中學習方法>初三學習方法>九年級數(shù)學>

蘇科版初三數(shù)學重要知識點

時間: 躍瀚0 分享

天才就是勤奮曾經有人這樣說過。如果這話不完全正確,那至少在很大程度上是正確的。學習,就算是天才,也是需要不斷練習與記憶的。下面是小編給大家整理的一些初三數(shù)學的知識點,希望對大家有所幫助。

九年級數(shù)學知識點

函數(shù)的圖像與一元二次方程

1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同

當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

當h<0時,則向左平行移動|h|個單位得到.

當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;

當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).

3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小.

4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:

(1)圖象與y軸一定相交,交點坐標為(0,c);

(2)當△=b^2-4ac>0,圖象與x軸交于兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的兩根.這兩點間的距離AB=|x?-x?|

當△=0.圖象與x軸只有一個交點;

當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y<0.

5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.

頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值.

6.用待定系數(shù)法求二次函數(shù)的解析式

(1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:

y=ax^2+bx+c(a≠0).

(2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).

(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).

三年級數(shù)學知識點

旋轉

一.知識框架

二.知識概念

1.旋轉:在平面內,將一個圖形繞一個圖形按某個方向轉動一個角度,這樣的運動叫做圖形的旋轉。這個定點叫做旋轉中心,轉動的角度叫做旋轉角。(圖形的旋轉是圖形上的每一點在平面上繞著某個固定點旋轉固定角度的位置移動,其中對應點到旋轉中心的距離相等,對應線段的長度、對應角的大小相等,旋轉前后圖形的大小和形狀沒有改變。)

2.旋轉對稱中心:把一個圖形繞著一個定點旋轉一個角度后,與初始圖形重合,這種圖形叫做旋轉對稱圖形,這個定點叫做旋轉對稱中心,旋轉的角度叫做旋轉角(旋轉角小于0°,大于360°)。

3.中心對稱圖形與中心對稱:

中心對稱圖形:如果把一個圖形繞著某一點旋轉180度后能與自身重合,那么我們就說,這個圖形成中心對稱圖形。

中心對稱:如果把一個圖形繞著某一點旋轉180度后能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱。

4.中心對稱的性質:

關于中心對稱的兩個圖形是全等形。

關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分。

關于中心對稱的兩個圖形,對應線段平行(或者在同一直線上)且相等。

本章內容通過讓學生經歷觀察、操作等過程了解旋轉的概念,探索旋轉的性質,進一步發(fā)展空間觀察,培養(yǎng)幾何思維和審美意識,在實際問題中體驗數(shù)學的快樂,激發(fā)對學習學習。

初三數(shù)學學習方法技巧

重視構建知識網絡——宏觀把握數(shù)學框架

要學會構建知識網絡,數(shù)學概念是構建知識網絡的出發(fā)點,也是數(shù)學中考[微博]考查的重點。因此,我們要掌握好代數(shù)中的數(shù)、式、不等式、方程、函數(shù)、三角比、統(tǒng)計和幾何中的平行線、三角形、四邊形、圓的概念、分類、定義、性質和判定,并會應用這些概念去解決一些問題。

重視夯實數(shù)學雙基——微觀掌握知識技能

在復習過程中夯實數(shù)學基礎,要注意知識的不斷深化,重視強化題組訓練——感悟數(shù)學思想方法

除了做基礎訓練題、平面幾何每日一題外,還可以做一些綜合題,并且養(yǎng)成解題后反思的習慣。反思自己的思維過程,反思知識點和解題技巧,反思多種解法的優(yōu)劣,反思各種方法的縱橫聯(lián)系。而總結出它所用到的數(shù)學思想方法,并把思想方法相近的題目編成一組,不斷提煉、不斷深化,做到舉一反三、觸類旁通。逐步學會觀察、試驗、分析、猜想、歸納、類比、聯(lián)想等思想方法,主動地發(fā)現(xiàn)問題和提出問題。

重視建立“病例檔案”——做到萬無一失

準備一本數(shù)學學習“病例卡”,把平時犯的錯誤記下來,找出“病因”開出“處方”,并且經常地拿出來看看、想想錯在哪里,為什么會錯,怎么改正,這樣到中考時你的數(shù)學就沒有什么“病例”了。我們要在教師的指導下做一定數(shù)量的數(shù)學習題,積累解題經驗、總結解題思路、形成解題思想、催生解題靈感、掌握學習方法。

重視常用公式技巧——做到思維敏捷準確

對經常使用的數(shù)學公式要理解來龍去脈,要進一步了解其推理過程,并對推導過程中產生的一些可能變化自行探究。對今后繼續(xù)學習所必須的知識和技能,對生活實際經常用到的常識,也要進行必要的訓練。例如:1-20的平方數(shù);簡單的勾股數(shù);正三角形的面積公式以及高和邊長的關系;30°、45°直角三角形三邊的關系……這樣做,一定能更好地掌握公式并勝過做大量習題,而且往往會有意想不到的效果。

重視中考動向要求——勤練解題規(guī)范速度

要把握好目前的中考動向,特別是近年來上海的中考越來越注重解題過程的規(guī)范和解答過程的完整。在此特別指出的是,有很多學生認為只要解出題目的答案就萬事大吉了,其實只要是有過程的解答題,過程分比最后的答案要重要得多,不要會做而不得分。

蘇科版初三數(shù)學重要知識點相關文章

初三數(shù)學重要知識點

九年級數(shù)學重要知識點

初三數(shù)學知識點整理歸納

九年級新學期數(shù)學知識點蘇教版

初三數(shù)學上冊的知識點

最好的學習方法推薦

蘇教版初中三年級數(shù)學復習計劃

蘇教版初三數(shù)學上冊期末試卷(2)

蘇教版初三數(shù)學上冊期末試卷

學習經驗總結

蘇科版初三數(shù)學重要知識點

天才就是勤奮曾經有人這樣說過。如果這話不完全正確,那至少在很大程度上是正確的。學習,就算是天才,也是需要不斷練習與記憶的。下面是小編給大家整理的一些初三數(shù)學的知識點,希望對大家有所幫助。九年級數(shù)學知識
推薦度:
點擊下載文檔文檔為doc格式
1139002