九年級數(shù)學優(yōu)秀學習方法
九年級數(shù)學優(yōu)秀學習方法大全
學習方法應該根據(jù)學生的個體差異和需求進行個性化定制,以滿足不同學生的學習需求和提高學習效果。這里給大家分享一些關于九年級數(shù)學優(yōu)秀學習方法,供大家參考學習。
九年級數(shù)學優(yōu)秀學習方法
(一)、充分聯(lián)想回憶基本知識和題型:
按照波利亞的觀點,在解決問題之前,我們應充分聯(lián)想和回憶與原有問題相同或相似的知識點和題型,充分利用相似問題中的方式、方法和結論,從而解決現(xiàn)有的問題。
(二)、全方位、多角度分析題意:
對于同一道數(shù)學題,常??梢圆煌膫让?、不同的角度去認識。因此,根據(jù)自己的知識和經(jīng)驗,適時調(diào)整分析問題的視角,有助于更好地把握題意,找到自己熟悉的解題方向。
(三)恰當構造輔助元素:
數(shù)學中,同一素材的題目,常??梢杂胁煌谋憩F(xiàn)形式;條件與結論(或問題)之間,也存在著多種聯(lián)系方式。因此,恰當構造輔助元素,有助于改變題目的形式,溝通條件與結論(或條件與問題)的內(nèi)在聯(lián)系,把陌生題轉化為熟悉題。
數(shù)學解題中,構造的輔助元素是多種多樣的,常見的有構造圖形(點、線、面、體),構造算法,構造多項式,構造方程(組),構造坐標系,構造數(shù)列,構造行列式,構造等價性命題,構造反例,構造數(shù)學模型等等。
九年級數(shù)學常用學習方法
一、做出來不如講出來,聽得懂不如說得通。
做10道題,不如講一道題。孩子做完家庭作業(yè)后,家長不妨鼓勵孩子開口講解一下數(shù)學作業(yè)中的難題,我也在群里會經(jīng)常發(fā)一些比較好的訓練題,您也可以鼓勵去想一想說一說,如果講得好,家長還可進行小獎勵,讓孩子更有成就感。
二、舉一反三,學會變通。
舉一反三出自孔子的《論語·述而》:“舉一隅,不以三隅反,則不復也。”意思是說:我舉出一個墻角,你們應該要能靈活的推想到另外三個墻角,如果不能的話,我也不會再教你們了。后來,大家就把孔子說的這段話變成了“舉一反三”這句成語,意思是說,學一件東西,可以靈活的思考,運用到其他相類似的東西上!
在數(shù)學的訓練中,一定要給孩子舉一反三訓練。一道題看似理解了,但他的思維可能比較直線,不多做幾道舉一反三或在此基礎上變式的題,他還是轉不過玩了。
舉一反三其實就是“師傅領進門,學藝在自身”這句話的執(zhí)行行為。
三、建立錯題本,培養(yǎng)正確的思維習慣
每上第一次課,我所講的課程內(nèi)容都和學生的錯題有關。我通常把試卷中的錯題摘抄出幾個典型題,作為課堂的例題再講一遍。而學生的反應,或是像沒有見過,或是對題目非常熟悉,但沒有思路。這些現(xiàn)象的發(fā)生,都是學生沒有及時總結的原因。所以第一次課后我都建議我的學生做一個錯題本,像寫日記一樣,記錄下自己的錯題和錯因分析。
一般來說,錯題分為三種類型:第一種是特別愚蠢的錯誤、特別簡單的錯誤;第二種就是拿到題目時一點思路都沒有,不知道解題該從何下手,但是一看到答案卻恍然大悟;第三種就是題目難度中等,按道理有能力做對,但是卻做錯了。
尤其第二種、第三種,必須放到錯題本上。建立錯題本的好處就是掌握了自己所犯錯的類型,為防范一類錯誤成為習慣性的思維。
四、圖形推理是培養(yǎng)邏輯思維能力最好的工具
假是真時真亦假,真是假時假亦真;邏輯思維是在規(guī)則的確定下而進行的思維,如果聯(lián)系生活就屬于非常規(guī)思維。一切看似與生活毫無聯(lián)系卻自在法則約束規(guī)范的范圍內(nèi)。邏輯推理的“瞞天過?!笨芍^五花八門,好似一個萬花筒,百變無窮,樂趣無窮。
幾何圖形是助其鍛煉邏輯思維的好工具,經(jīng)典的圖形推理題總有其構思、思路、巧妙的思維;經(jīng)典在于其看似變態(tài),而實際解法卻簡而又簡單。
因此,多訓練一些圖形推理題,對其邏輯思維很有幫助。
如何學好九年級數(shù)學呢
首先,對已知關系進行化簡,找出所有能找出的等量關系式。其次,將所求或所證進行變形,予以找出的等量關系聯(lián)系起來。運用適當?shù)墓健⒎赐苹蚣记尚暂^強的方法進行求解或求證,基本思路和幾何是一樣的,同樣需要平時的積累。其他的題型基本思路和上述幾何、代數(shù)基本相同,相信同學們在熟練運用幾何代數(shù)的學習方法后定能總結出自己的一套思維模式,在數(shù)學的基本學習中取得良好的成績。
如何高效學習九年級數(shù)學
作業(yè)一定要養(yǎng)成獨立思考的習慣,多從不同的方法、角度入手,多從典型題目中探索多種解題方法,從中得到聯(lián)想和啟發(fā)。還應多樹立數(shù)學解題思想:如,方程的思想、函數(shù)的思想、數(shù)形結合的思想、整體的思想、分類的思想等常用方法;對于難題,要多問幾個為什么,如改變條件、添加條件、結論與條件互換,原結論還成立嗎?另外,對于自己作業(yè)、試卷中出現(xiàn)的錯誤,最好能準備一本錯題集,以便今后復習中使用。做到絕不出現(xiàn)第二次類似錯誤。
九年級數(shù)學簡單學習方法
每次考試結束試卷發(fā)下來,要認真分析得失,總結經(jīng)驗教訓。特別是將試卷中出現(xiàn)的錯誤進行分類。
①遺憾之錯:就是分明會做,反而做錯了的題
②似非之錯:記憶得不準確,理解得不夠透徹,應用得不夠自如;回答不嚴密、不完整等等
③無為之錯:由于不會答錯了或猜的,或者根本沒有答,這是無思路、不理解,更談不上應用的問題
原因找到后就消除遺憾、弄懂似非、力爭有為,切實解決“會而不對、對而不全”的老大難問題。