人教版數(shù)學三年級下冊知識點
三年級的同學在學習方面正處于分水嶺,所以學習一定不能松懈,每天堅持做一道題,每天進步一點點時間久了就會發(fā)現(xiàn)進步很多,要相信水滴石穿。下面就是小編為大家整理的數(shù)學三年級知識點,希望能夠幫助到大家。
人教版數(shù)學三年級下冊知識點
1、東與西相對,南與北相對。按順時針方向轉:東→南→西→北。
2、地圖通常是按上北下南,左西右東繪制的。
3、八個方向:東、南、西、北、東南、東北、西南、西北。
第二單元除數(shù)是一位數(shù)的除法
1、筆算除法順序:確定商的位數(shù),試商,檢查,驗算。
2、基本規(guī)律:
(1)從高位除起,除到哪一位,就把商寫在那一位;
(2)三位數(shù)除以一位數(shù)時百位上夠除,商就是三位數(shù);百位上不夠除,商就是兩位數(shù);(位不夠除,就看兩位上商。)
(3)哪一位有余數(shù),就和后面一位上的數(shù)合起來再除;
(4)哪一位上不夠商1,就添0占位;每一次除得的余數(shù)一定要比除數(shù)小。
3、除法用乘法來驗算
沒有余數(shù)的除法:有余數(shù)的除法:
被除數(shù)÷除數(shù)=商被除數(shù)÷除數(shù)=商……余數(shù)
商×除數(shù)=被除數(shù)商×除數(shù)+余數(shù)=被除數(shù)
4、0除以任何數(shù)(0除外)都等于0,0乘任何數(shù)都得0,
0加任何數(shù)都得任何數(shù)本身,任何數(shù)減0都得任何數(shù)本身。
5、2、3、5倍數(shù)的特點
2的倍數(shù):個位上是2、4、6、8、0的數(shù)是2的倍數(shù)。
5的倍數(shù):個位上是0或5的數(shù)是5的倍數(shù)。
3的倍數(shù)3的倍數(shù):各個數(shù)位上的數(shù)字加起來的和是3的倍數(shù),這個數(shù)就是3的倍數(shù)。
比如:462,4+6+2=12,12是3的倍數(shù),所以462是3的倍數(shù)。
6、關于倍數(shù)問題:
兩數(shù)和÷倍數(shù)和=1倍的數(shù)
兩數(shù)差÷倍數(shù)差=1倍的數(shù)
例:已知甲數(shù)是乙數(shù)的5倍,甲乙兩數(shù)的和是24,求甲乙兩數(shù)?
分析:這里把乙數(shù)看成1倍的數(shù),那甲數(shù)就是5倍的數(shù)。它們加起來就相當于乙數(shù)的6倍了,而它們加起來的和是24。這也就相當于說乙數(shù)的6倍是24。所以乙數(shù)為:24÷6=4,甲數(shù)為:4×5=20
同樣:若已知甲數(shù)是乙數(shù)的5倍,甲乙兩數(shù)之差是24,求甲乙兩數(shù)?
分析:這里把乙數(shù)看成1倍的數(shù),那甲數(shù)就是5倍的數(shù)。它們的差就相當于乙數(shù)的4倍了,而它們的差是24。這也就相當于說乙數(shù)的4倍是24。所以乙數(shù)為:24÷4=6,甲數(shù)為:6×5=30
7、和差問題
(兩數(shù)和—兩數(shù)差)÷2=較小的數(shù)
(兩數(shù)和+兩數(shù)差)÷2=較大的數(shù)
例:已知甲乙兩數(shù)之和是37,兩數(shù)之差是19,求甲乙兩數(shù)各是多少?
如圖:
解析:如果給甲數(shù)加上“乙數(shù)比甲數(shù)多的部分(兩數(shù)差)”(虛線部分),則由圖知,甲數(shù)+兩數(shù)差=乙數(shù)。如是:甲數(shù)+兩數(shù)差+乙數(shù)=甲數(shù)+乙數(shù)+兩數(shù)差=兩數(shù)和+兩數(shù)差
又有:甲數(shù)+兩數(shù)差+乙數(shù)=乙數(shù)+乙數(shù)=乙數(shù)×2
知道:兩數(shù)和+兩數(shù)差=乙數(shù)×2(兩數(shù)和+兩數(shù)差)÷2=乙數(shù)
解:假設乙數(shù)是較大的數(shù)。乙:(37+19)÷2=28甲:28-19=9
8、鋸木頭問題。
王叔叔把一根木條鋸成4段用12分鐘,鋸成5段需要多長時間?
如圖,鋸成4段只用鋸3次,也就是鋸3次要12分鐘,那么可以知道鋸一次要:12÷3=4(分鐘)
而鋸成5段只用鋸4次,所需時間為:4×4=16(分鐘)
9、巧用余數(shù)解決問題。
①÷8=6……,求被除數(shù)是,最小是。
根據(jù)除法中“余數(shù)一定要比除數(shù)小”規(guī)則,余數(shù)應是7,最小應是1。
再由公式:商×除數(shù)+余數(shù)=被除數(shù),知道被除數(shù)應是6×8+7=55,最小應是6×8+1=49。
②少年宮有一串彩燈,按1紅,2黃,3綠排列著,請你猜一猜第89個是什么顏色?
……
由圖可知,彩燈一組為:1+2+3=6(個),照這樣下去,89÷6=14(組)……5(個)第89個已經(jīng)有像上面的這樣6個一組14組,還多余5個;這5個再照1紅,2黃,3綠排列下去,第5個就是綠色的了。
③加一份和減一份的余數(shù)問題。
例1:38個去劃船,每條船限坐4個,一共要幾條船?
38÷4=9(條)……2(人)余下的2人也要1條船,9+1=10條。
答:一共要10條船。
例2:做一件成人衣服要3米布,現(xiàn)在有17米布,能做幾件成人衣服?
17÷3=5(件)……2(米)余下的2米布不能做一件成人衣服
答:能做5件成人衣服。
1、求平均數(shù)公式:總和÷份數(shù)=平均數(shù)總數(shù)÷平均數(shù)=份數(shù)平均數(shù)×份數(shù)=總和
2、平均數(shù)能較好地反映一組數(shù)據(jù)的總體情況
3、通常條形統(tǒng)計圖能描述一組數(shù)據(jù)中不同樣本之間的差異,
折線統(tǒng)計圖能描述一組數(shù)據(jù)的變化趨勢,扇形統(tǒng)計圖能描述一組數(shù)據(jù)占總體的百分比。
4、條形統(tǒng)計圖中,一定要看清楚一格表是多少個單位,是表示1、2、5、10或更多單位。
第四單元年、月、日
1、重要日子:1949年10月1日,中華人民共和國成立;
1月1日元旦節(jié);3月12日植樹節(jié);
5月1日勞動節(jié);6月1日兒童節(jié);
7月1日建黨節(jié);8月1日建軍節(jié);
9月10日教師節(jié);10月1日國慶節(jié)。
2、一年有十二個月,1.3.5.7.8.10.12這七個月是31天,4.6.9.11這四個月是30天,
平年2月是28天,閏年2月是29天,平年全年有365天,閏年全年有366天。
3、一年分四季,每3個月為一季;一、二、三月是第一季度,
四、五、六月是第二季度,
七、八、九月是第三季度,
十、十一、十二是第四季度。
4、公歷年份是4的倍數(shù)一般都是閏年,但公歷年份是整百數(shù)的,必須是400的倍數(shù)才是閏年。如1900年不是閏年而是平年,而2000年是閏年。
5、推算星期幾的方法例:已知今天星期三,再過50天星期幾?
解析:因為一個星期是七天,那么由50÷7=7(星期)……1(天),知道50天里有7個星期多一天,所以第50天是星期四。
6、24時表示法:超過下午1時的時刻用24時計時法表示就是把原來的時刻加上12。反過來要把24時計時法表示的時刻表示成普通計時法的時刻,超過13時的時刻就減12,并加上下午、晚上等字在時刻前面。比如下午3時→3+12=15時,16時:16-12=下午4時。
5、計算經(jīng)過時間,就是用結束時刻減開始時刻。比如10:00開始營業(yè),22:00結束營業(yè),營業(yè)時間為:22:00—10:00=12(小時)結束時刻—開始時刻=時間段
6、常用的時間單位有:年、月、日、時、分、秒。
7、時間單位進率:1世紀=100年,1年=12個月,1日=24小時,1小時=60分鐘,1分鐘=60秒鐘
第五單元兩位數(shù)乘兩位數(shù)
1、口算乘法:整十、整百的數(shù)相乘,只需把0前面的數(shù)字相乘,再看兩個因數(shù)一共有幾個0,就在結果后面添上幾個0。
如:30×500=15000可以這樣想,3×5=15,兩個因數(shù)一共有3個0,在所得結果15后面添上3個0就得到30×500=15000
2、筆算乘法:先把第一個因數(shù)同第二個因數(shù)個位上的數(shù)相乘,再與第二個因數(shù)十位上的數(shù)相乘(積與十位對齊),最后把兩個積加起來。
3、幾個特殊數(shù):25×4=100,125×8=1000
4、相關公式:因數(shù)×因數(shù)=積積÷因數(shù)=另一個因數(shù)
第六單元面積
1.物體的表面或封閉圖形的大小,就是它們的面積。封閉圖形一周的長度,是它的周長。
2.比較兩個圖形面積的大小,要用統(tǒng)一的面積單位來測量。
3.①邊長1厘米的正方形,面積是1平方厘米;
②邊長1分米的正方形,面積是1平方分米。
③邊長1米的正方形,面積是1平方米。
4.長方形的面積=長×寬正方形的面積=邊長×邊長
長方形的周長=(長+寬)×2正方形的周長=邊長×4
已知長方形的面積求長:長=面積÷寬已知正方形的周長求邊長:邊長=面積÷4
已知長方形的周長求長:長=周長÷2-寬
5.面積單位之間的進率長度單位之間的進率
1平方分米=100平方厘米1分米=10厘米
1平方米=100平方分米1米=10分米
1公頃=10000平方米1千米=1000米
1平方千米=100公頃
6.周長相等的兩個長方形,面積不一定相等。面積相等的兩個長方形,周長也不一定相等。
人教版數(shù)學三年級下冊學習方法
第一、加強小學三年級學生運用“數(shù)概念”的能力培養(yǎng)。
有不少小學數(shù)學的教學中,常只重算法,忽視數(shù)概念的掌握和算理的理解。因而只能機械地應用學過的東西,或簡單地模仿做過的例題,不能在變化了情況下遷移;或者只知道一些定義,而不能全面掌握屬于這一概念的東西。
第二、重視和加強發(fā)展小學三年級學生“空間關系”的知覺能力。
數(shù)和形是不可分開的。因此,學生掌握空間關系的知覺能力也是小學數(shù)學能力的重要組成部分。例如三年級下冊如用圓圈圖(韋恩圖)向學生直觀的滲透集合概念。讓他們感知圈內的物體具有某種共同的屬性,可以看作一個整體,這個整體就是一個集合。
第三、觀察活動:
所謂觀察是指學生對客觀事物或某種現(xiàn)象的仔細察看,因而是一種有意注意。培養(yǎng)的途徑是:教師提供的“客觀事物或某種現(xiàn)象”特征有序、背景鮮明,而且要給出一些觀察的思考題。這樣有助于學生明確觀察目標,進而使他們邊觀察,邊思考,邊議論,邊作觀察記錄,以發(fā)現(xiàn)數(shù)學規(guī)律、本質。
人教版數(shù)學三年級下冊復習方法
一、制定切實可行的復習計劃,并認真執(zhí)行計劃。
為使復習具有針對性,目的性和可行性,找準重點、難點,大綱(課程標準)是復習依據(jù),教材是復習的藍本。復習時要弄清學習中的難點、疑點及各知識點易出錯的原因,這樣做到復習有針對性,可收到事半功倍的效果。
二,要學會在原有知識的基礎上,進行歸類整理,理清每一個單元的重點是什么,形成知識網(wǎng)絡體系。
可充分老師發(fā)的概念卷和平時在課堂上作的聽課筆記。還要學會分析每次單元考試的題型,一般的來講是這樣幾個方面:一是概念題,二是計算題,三是實踐應用題,四是操作題四個方面。復習的作用就是要:熟能生巧。所以復習階段,可能要多做一些題型,當然也不是說要搞題海戰(zhàn)術,但數(shù)學方面不做題又不行,要把握一個度。做一份題目要有一份題目的收獲。題無非是就哪幾種類型,做完一份題目以后要反思,多問幾個為什么?
三、一定要在反饋矯正上下功夫,正確對待錯題本。
把你做錯的題目摘抄到本子上,先改錯,再進行分類整理,找到自己的不足,針對錯題的錯因對癥下藥。千萬不要認為訂正麻煩,要養(yǎng)成習慣,學習成績優(yōu)秀穩(wěn)定的同學,往往很重視訂正和收集錯題。如果針對錯題一定能很好地做到查漏補缺,那復習的效果會更好!
四、一題多解,多題一解,提高解題的靈活性。
有些題目,可以從不同的角度去分析,得到不同的解題方法。一題多解可以培養(yǎng)分析問題的能力。靈活解題的能力。不同的解題思路,列式不同,結果相同,收到殊途同歸的效果。同時也給其他同學以啟迪,開闊解題思路。有些應用題,雖題目形式不同,但它們的解題方法是一樣的,故在復習時,要從不同的角度去思考,要對各類習題進行歸類,這樣才能使所所學知識融會貫通,提高解題靈活性。
五、有的放矢,挖掘創(chuàng)新。
機械的重復,什么都講,什么都練是復習大忌,復習一定要有目的,有重點,要對所學知識歸納,概括。習題要具有開放性,創(chuàng)新性,使思維得到充分發(fā)展,要正確評估自己,自覺補缺查漏,面對復雜多變的題目,嚴密審題,弄清知識結構關系和知識規(guī)律,發(fā)掘隱含條件,多思多找,得出自己的經(jīng)驗。
六、要養(yǎng)成檢查的習慣。
復習時如能注意檢查的重要性,效果也會事半功倍。根據(jù)同學們平時易出現(xiàn)的情況,建議大家要求學生從這些地方檢查:
1、檢查列式是否正確。讀題,看是否該用加法、減法、乘法或是除法來算。
2、列式正確后,看算式中的數(shù)字是否抄錯,是否和題中給我們的一樣。
3、用估算的方法檢查得數(shù),如259+487,我們一看至少要等于六七百,如果得數(shù)是四百多,或三百多等,那計算一定錯了!
4、精確地再算一遍,以得到正確的結果。注意一定要筆算,五年級后,小數(shù)計算用口算很容易錯,而且要規(guī)范使用草稿本,不要以為是草稿本就可以亂寫亂畫!往往一些數(shù)由于書寫不規(guī)范,抄答案都抄錯!
5、檢查單位和答有沒有填寫齊全。
6、操作題,要用鉛筆,尺、三角板畫圖,切不可信手亂畫,畫完后記得標明條件(如:直角符號、長2厘米、高3厘米等),是否和題目要求一致。
7、解方程題,要記得寫“解”,應用題還要先“設”。