有關高中必修五數(shù)學知識點
在現(xiàn)實學習生活中,大家都沒少背知識點吧?知識點是傳遞信息的基本單位,知識點對提高學習導航具有重要的作用。還在為沒有系統(tǒng)的知識點而發(fā)愁嗎?下面小編為大家?guī)碛嘘P高中必修五數(shù)學知識點,希望大家喜歡!
高中必修五數(shù)學知識點
(一)解三角形:
1、正弦定理:在中,、、分別為角、、的對邊,,則有
(為的外接圓的半徑)
2、正弦定理的變形公式:①,,;
②,,;③;
3、三角形面積公式:.
4、余弦定理:在中,有,推論:
(二)數(shù)列:
1.數(shù)列的有關概念:
(1)數(shù)列:按照一定次序排列的一列數(shù)。數(shù)列是有序的。數(shù)列是定義在自然數(shù)N_它的有限子集{1,2,3,…,n}上的函數(shù)。
(2)通項公式:數(shù)列的第n項an與n之間的函數(shù)關系用一個公式來表示,這個公式即是該數(shù)列的通項公式。如:。
(3)遞推公式:已知數(shù)列{an}的第1項(或前幾項),且任一項an與他的前一項an-1(或前幾項)可以用一個公式來表示,這個公式即是該數(shù)列的遞推公式。
如:。
2.數(shù)列的表示方法:
(1)列舉法:如1,3,5,7,9,…(2)圖象法:用(n,an)孤立點表示。
(3)解析法:用通項公式表示。(4)遞推法:用遞推公式表示。
3.數(shù)列的分類:
4.數(shù)列{an}及前n項和之間的關系:
高中必修五數(shù)學知識點梳理
數(shù)列
1、數(shù)列的定義及數(shù)列的通項公式:
① an?f(n),數(shù)列是定義域為N
的函數(shù)f(n),當n依次取1,2,???時的一列函數(shù)值② i。歸納法
若S0?0,則an不分段;若S0?0,則an分段iii。若an?1?pan?q,則可設an?1?m?p(an?m)解得m,得等比數(shù)列?an?m?
?Sn?f(an)
iv。若Sn?f(an),先求a
1?得到關于an?1和an的遞推關系式
S?f(a)n?1?n?1?Sn?2an?1
例如:Sn?2an?1先求a1,再構(gòu)造方程組:??(下減上)an?1?2an?1?2an
?Sn?1?2an?1?1
2、等差數(shù)列:
①定義:a
n?1?an=d(常數(shù)),證明數(shù)列是等差數(shù)列的重要工具。 ②通項d?0時,an為關于n的一次函數(shù);
d>0時,an為單調(diào)遞增數(shù)列;d<0時,a
n為單調(diào)遞減數(shù)列。
n(n?1)2
③前n?na1?
d,
d?0時,Sn是關于n的不含常數(shù)項的一元二次函數(shù),反之也成立。
④性質(zhì):ii。若?an?為等差數(shù)列,則am,am?k,am?2k,…仍為等差數(shù)列。 iii。若?an?為等差數(shù)列,則Sn,S2n?Sn,S3n?S2n,…仍為等差數(shù)列。 iv若A為a,b的等差中項,則有A?3。等比數(shù)列:
①定義:
an?1an
?q(常數(shù)),是證明數(shù)列是等比數(shù)列的重要工具。
a?b2
②通項時為常數(shù)列)。
③。前n項和
需特別注意,公比為字母時要討論。
高中必修五數(shù)學知識點整理
(1)定義:
對于函數(shù)y=f(x)(x∈D),把使f(x)=0成立的實數(shù)x叫做函數(shù)y=f(x)(x∈D)的零點。
(2)函數(shù)的零點與相應方程的根、函數(shù)的圖象與x軸交點間的關系:
方程f(x)=0有實數(shù)根?函數(shù)y=f(x)的圖象與x軸有交點?函數(shù)y=f(x)有零點。
(3)函數(shù)零點的判定(零點存在性定理):
如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)·f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,即存在c∈(a,b),使得f(c)=0,這個c也就是方程f(x)=0的根。
二二次函數(shù)y=ax2+bx+c(a>0)的圖象與零點的關系
三二分法
對于在區(qū)間[a,b]上連續(xù)不斷且f(a)·f(b)<0的函數(shù)y=f(x),通過不斷地把函數(shù)f(x)的零點所在的區(qū)間一分為二,使區(qū)間的兩個端點逐步逼近零點,進而得到零點近似值的方法叫做二分法。
1、函數(shù)的零點不是點:
函數(shù)y=f(x)的零點就是方程f(x)=0的實數(shù)根,也就是函數(shù)y=f(x)的圖象與x軸交點的橫坐標,所以函數(shù)的零點是一個數(shù),而不是一個點.在寫函數(shù)零點時,所寫的一定是一個數(shù)字,而不是一個坐標。
2、對函數(shù)零點存在的判斷中,必須強調(diào):
(1)、f(x)在[a,b]上連續(xù);
(2)、f(a)·f(b)<0;
(3)、在(a,b)內(nèi)存在零點。
這是零點存在的一個充分條件,但不必要。
3、對于定義域內(nèi)連續(xù)不斷的函數(shù),其相鄰兩個零點之間的所有函數(shù)值保持同號。
利用函數(shù)零點的存在性定理判斷零點所在的區(qū)間時,首先看函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是否連續(xù)不斷,再看是否有f(a)·f(b)<0.若有,則函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)必有零點。
判斷函數(shù)零點個數(shù)的常用方法
1、解方程法:
令f(x)=0,如果能求出解,則有幾個解就有幾個零點。
2、零點存在性定理法:
利用定理不僅要判斷函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性、周期性、對稱性)才能確定函數(shù)有多少個零點。
3、數(shù)形結(jié)合法:
轉(zhuǎn)化為兩個函數(shù)的圖象的交點個數(shù)問題.先畫出兩個函數(shù)的圖象,看其交點的個數(shù),其中交點的個數(shù),就是函數(shù)零點的個數(shù)。
已知函數(shù)有零點(方程有根)求參數(shù)取值常用的方法
1、直接法:
直接根據(jù)題設條件構(gòu)建關于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍。
2、分離參數(shù)法:
先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決。
3、數(shù)形結(jié)合法:
先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解。
有關高中必修五數(shù)學知識點相關文章: