初中數(shù)學(xué)題高效解題方法與技巧
初中數(shù)學(xué)題高效解題方法與技巧要點(diǎn)
初中數(shù)學(xué)的解題方法
1. 配方法
通過把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式解決數(shù)學(xué)問題的方法,叫配方法。
配方法用得最多的是配成完全平方式,它是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2. 因式分解法
因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式,是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法,在代數(shù)、幾何、三角等的解題中起著重要的作用。
因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。
3. 換元法
通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋€(gè)部分或改造原來的式子,使它簡(jiǎn)化,使問題易于解決。
4. 判別式法與韋達(dá)定理
一元二次方程ax2bxc=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。
韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡(jiǎn)單應(yīng)用外,還可以求根的對(duì)稱函數(shù),計(jì)論二次方程根的符號(hào),解對(duì)稱方程組,以及解一些有關(guān)二次曲線的問題等。
5. 待定系數(shù)法
在解數(shù)學(xué)問題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問題,這種解題方法稱為待定系數(shù)法。
6. 構(gòu)造法
在解題時(shí),我們常常會(huì)采用這樣的方法,通過對(duì)條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。
運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識(shí)互相滲透,有利于問題的解決。
7. 面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計(jì)算有關(guān)的性質(zhì)定理,不僅可用于計(jì)算面積,而且用它來證明平面幾何題有時(shí)會(huì)收到事半功倍的效果。
運(yùn)用面積關(guān)系來證明或計(jì)算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點(diǎn)是把已知和未知各量用面積公式聯(lián)系起來,通過運(yùn)算達(dá)到求證的結(jié)果。
所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計(jì)算,有時(shí)可以不添置輔助線,即使需要添置輔助線,也很容易考慮到。
8. 幾何變換法
在數(shù)學(xué)問題的研究中,常常運(yùn)用變換法,把復(fù)雜性問題轉(zhuǎn)化為簡(jiǎn)單性問題而得到解決。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。
中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來很難甚至于無(wú)法下手的習(xí)題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。另一方面,也可將變換的觀點(diǎn)滲透到中學(xué)數(shù)學(xué)教學(xué)中。
將圖形從相等靜止條件下的研究和運(yùn)動(dòng)中的研究結(jié)合起來,有利于對(duì)圖形本質(zhì)的認(rèn)識(shí)。
幾何變換包括平移、旋轉(zhuǎn)、對(duì)稱。
9. 反證法
反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。
反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。
用反證法證明一個(gè)命題的步驟,大體上分為反設(shè)、歸謬、結(jié)論。
反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個(gè)/一個(gè)也沒有;至少有n個(gè)/至多有(n一1)個(gè);至多有一個(gè)/至少有兩個(gè);唯一/至少有兩個(gè)。
歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無(wú)源之水,無(wú)本之木。推理必須嚴(yán)謹(jǐn)。
導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。
初中數(shù)學(xué)的解題方法
一、熟悉習(xí)題中所涉及的內(nèi)容,包括定義、公式、定理和規(guī)則。
解題、做練習(xí)只是學(xué)習(xí)過程中的一個(gè)環(huán)節(jié),而不是學(xué)習(xí)的全部,你不能為解題而解題。解題是為閱讀服務(wù)的,是檢查你是否讀懂了教科書,是否深刻理解了其中的概念、定理、公式和規(guī)則,能否利用這些概念、定理、公式和規(guī)則解決實(shí)際問題。解題時(shí),我們的概念越清晰,對(duì)公式、定理和規(guī)則越熟悉,解題速度就越快。
因此,我們?cè)诮忸}之前,應(yīng)通過閱讀教科書和做簡(jiǎn)單的練習(xí),先熟悉、記憶和辨別這些基本內(nèi)容,正確理解其涵義的本質(zhì),接著馬上就做后面所配的練習(xí),一刻也不要停留。
二、熟悉習(xí)題中所涉及到的以前學(xué)過的知識(shí),以及與其他學(xué)科相關(guān)的知識(shí)。
有時(shí)候,我們遇到一道不會(huì)做的習(xí)題,不是我們沒有學(xué)會(huì)現(xiàn)在所要學(xué)會(huì)的內(nèi)容,而是要用到過去已經(jīng)學(xué)過的一個(gè)公式,而我們卻記得不很清楚了;或是需用到一個(gè)特殊的定理,而我們卻從未學(xué)過,這樣就使解題速度大為降低。
這時(shí),我們應(yīng)先補(bǔ)充一些必須補(bǔ)充的相關(guān)知識(shí),弄清楚與題目相關(guān)的概念、公式或定理,然后再去解題,否則就是浪費(fèi)時(shí)間,當(dāng)然,解題速度就更無(wú)從談起了。
三、熟悉基本的解題步驟和解題方法。
解題的過程,是一個(gè)思維的過程。對(duì)一些基本的、常見的問題,前人已經(jīng)總結(jié)出了一些基本的解題思路和常用的解題程序,我們一般只要順著這些解題的思路,遵循這些解題的步驟,往往很容易找到習(xí)題的答案。否則,走了彎路就多花了時(shí)間。
四、認(rèn)真做好歸納總結(jié)。
在解過一定數(shù)量的習(xí)題之后,對(duì)所涉及到的知識(shí)、解題方法進(jìn)行歸納總結(jié),以便使解題思路更為清晰,就能達(dá)到舉一反三的效果,對(duì)于類似的習(xí)題一目了然,可以節(jié)約大量的解題時(shí)間。
五、先易后難,逐步增加習(xí)題的難度。
人們認(rèn)識(shí)事物的過程都是從簡(jiǎn)單到復(fù)雜。簡(jiǎn)單的問題解多了,從而使概念清晰了,對(duì)公式、定理以及解題步驟熟悉了,解題時(shí)就會(huì)形成跳躍性思維,解題的速度就會(huì)大大提高。養(yǎng)成了習(xí)慣,遇到一般的難題,同樣可以保持較高的解題速度。有些學(xué)生不太重視這些基本的、簡(jiǎn)單的習(xí)題,認(rèn)為沒有必要花費(fèi)時(shí)間去解這些簡(jiǎn)單的習(xí)題,結(jié)果是概念不清,公式、定理及解題步驟不熟,遇到稍難一些的題,就束手無(wú)策,解題速度就更不用說了。
其實(shí),解簡(jiǎn)單容易的習(xí)題,并不一定比解一道復(fù)雜難題的勞動(dòng)強(qiáng)度和效率低。比如,與一個(gè)人扛一大袋大米上五層樓相比,一個(gè)人拎一個(gè)小提包也上到五層樓當(dāng)然要輕松得多。但是,如果扛米的人只上一次,而拎包的人要來回上下50次、甚至100次,那么,拎包人比扛米人的勞動(dòng)強(qiáng)度大。所以在相同時(shí)間內(nèi),解50道、100道簡(jiǎn)單題,可能要比解一道難題的勞動(dòng)強(qiáng)度大。
由此可見,去解一道難以解出的難題,不如去解30道稍微簡(jiǎn)單一些的習(xí)題,其收獲也許會(huì)更大。因此,我們?cè)趯W(xué)習(xí)時(shí),應(yīng)根據(jù)自己的能力,先去解那些看似簡(jiǎn)單,卻很重要的習(xí)題,以不斷提高解題速度和解題能力。隨著速度和能力的提高,再逐漸增加難度,就會(huì)達(dá)到事半功倍的效果。
六、認(rèn)真、仔細(xì)地審題。
對(duì)于一道具體的習(xí)題,解題時(shí)最重要的環(huán)節(jié)是審題。審題的第一步是讀題,這是獲取信息量和思考的過程。讀題要慢,一邊讀,一邊想,應(yīng)特別注意每一句話的內(nèi)在涵義,并從中找出隱含條件。讀題一旦結(jié)束,哪些是已知條件?求解的結(jié)論是什么?還缺少哪些條件,可否從已知條件中推出?在你的腦海里,這些信息就應(yīng)該已經(jīng)結(jié)成了一張網(wǎng),并有了初步的思路和解題方案,然后就是根據(jù)自己的思路,演算一遍,加以驗(yàn)證。
有些學(xué)生沒有養(yǎng)成讀題、思考的習(xí)慣,心里著急,匆匆一看,就開始解題,結(jié)果常常是漏掉了一些信息,花了很長(zhǎng)時(shí)間解不出來,還找不到原因,想快卻慢了。很多時(shí)候?qū)W生問問題的時(shí)候,老師和他一起讀題,讀到一半時(shí),他說:“老師,我會(huì)了?!彼裕趯?shí)際解題時(shí),應(yīng)特別注意,審題要認(rèn)真、仔細(xì)。
七、學(xué)會(huì)畫圖。
畫圖是一個(gè)翻譯的過程。讀題時(shí),若能根據(jù)題義,把對(duì)數(shù)學(xué)(或其他學(xué)科)語(yǔ)言的理解,畫成分析圖,就使題目變得形象、直觀。這樣就把解題時(shí)的抽象思維,變成了形象思維,從而降低了解題難度。有些題目,只要分析圖一畫出來,其中的關(guān)系就變得一目了然。尤其是對(duì)于幾何題,包括解析幾何題,若不會(huì)畫圖,有時(shí)簡(jiǎn)直是無(wú)從下手。
因此,牢記各種題型的基本作圖方法,牢記各種函數(shù)的圖像和意義及演變過程和條件,對(duì)于提高解題速度非常重要。畫圖時(shí)應(yīng)注意盡量畫得準(zhǔn)確。畫圖準(zhǔn)確,有時(shí)能使你一眼就看出答案,再進(jìn)一步去演算證實(shí)就可以了;反之,作圖不準(zhǔn)確,有時(shí)會(huì)將你引入歧途。
總之,學(xué)習(xí)是一個(gè)不斷深化的認(rèn)識(shí)過程,解題只是學(xué)習(xí)的一個(gè)重要環(huán)節(jié)。你對(duì)學(xué)習(xí)的內(nèi)容越熟悉,對(duì)基本解題思路和方法越熟悉,背熟的數(shù)字、公式越多,并能把局部與整體有機(jī)地結(jié)合為一體,形成了跳躍性思維,就可以大大加快解題速度。
初中數(shù)學(xué)知識(shí)點(diǎn)資料
直線、射線、線段
(1)直線、射線、線段的表示方法
①直線:用一個(gè)小寫字母表示,如:直線l,或用兩個(gè)大寫字母(直線上的)表示,如直線AB。
②射線:是直線的一部分,用一個(gè)小寫字母表示,如:射線l;用兩個(gè)大寫字母表示,端點(diǎn)在前,如:射線OA。注意:用兩個(gè)字母表示時(shí),端點(diǎn)的字母放在前邊。
③線段:線段是直線的一部分,用一個(gè)小寫字母表示,如線段a;用兩個(gè)表示端點(diǎn)的字母表示,如:線段AB(或線段BA)。
(2)點(diǎn)與直線的位置關(guān)系:
①點(diǎn)經(jīng)過直線,說明點(diǎn)在直線上;
②點(diǎn)不經(jīng)過直線,說明點(diǎn)在直線外。
兩點(diǎn)間的距離
(1)兩點(diǎn)間的距離:連接兩點(diǎn)間的線段的長(zhǎng)度叫兩點(diǎn)間的距離。
(2)平面上任意兩點(diǎn)間都有一定距離,它指的是連接這兩點(diǎn)的線段的長(zhǎng)度,學(xué)習(xí)此概念時(shí),注意強(qiáng)調(diào)最后的兩個(gè)字“長(zhǎng)度”,也就是說,它是一個(gè)量,有大小,區(qū)別于線段,線段是圖形。線段的長(zhǎng)度才是兩點(diǎn)的距離。可以說畫線段,但不能說畫距離。
正方體
(1)對(duì)于此類問題一般方法是用紙按圖的樣子折疊后可以解決,或是在對(duì)展開圖理解的基礎(chǔ)上直接想象。
(2)從實(shí)物出發(fā),結(jié)合具體的問題,辨析幾何體的展開圖,通過結(jié)合立體圖形與平面圖形的轉(zhuǎn)化,建立空間觀念,是解決此類問題的關(guān)鍵。
(3)正方體的展開圖有11種情況,分析平面展開圖的各種情況后再認(rèn)真確定哪兩個(gè)面的對(duì)面。