初三數(shù)學(xué)基礎(chǔ)知識(shí)點(diǎn)總結(jié)
初三數(shù)學(xué)基礎(chǔ)知識(shí)點(diǎn)總結(jié)有哪些?激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,教師培養(yǎng)學(xué)生的觀察、歸納與概括的能力,使學(xué)生建立正確的數(shù)感和解決實(shí)際問(wèn)題的能力。下面是小編整理的初三數(shù)學(xué)基礎(chǔ)知識(shí)點(diǎn),歡迎閱讀學(xué)習(xí)!
初三數(shù)學(xué)基礎(chǔ)知識(shí)
一、圓的'相關(guān)概念
1、圓的定義
在一個(gè)個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫做圓,固定的端點(diǎn)O叫做圓心,線段OA叫做半徑。
2、直線圓的與置位關(guān)系
1.線直與圓有唯公一共時(shí),點(diǎn)做直叫與圓線切
2.三角的外形圓接的圓叫做三心形角外心
3.弦切角于所等夾弧所對(duì)的的圓心角
4.三角的內(nèi)形圓切的圓叫做三心形角內(nèi)心
5.垂于直徑半直線必為圓的的切線
6.過(guò)徑半外的點(diǎn)并且垂直端于半的徑直線是圓切線
7.垂于直徑半直線是圓的的切線
8.圓切線垂的直過(guò)切于點(diǎn)半徑
3、圓的幾何表示
以點(diǎn)O為圓心的圓記作“⊙O”,讀作“圓O”
二、垂徑定理及其推論
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的弧。
推論1:(1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧。
(2)弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧。
(3)平分弦所對(duì)的一條弧的直徑垂直平分弦,并且平分弦所對(duì)的另一條弧。
推論2:圓的兩條平行弦所夾的弧相等。
垂徑定理及其推論可概括為:
過(guò)圓心
垂直于弦
直徑 平分弦 知二推三
平分弦所對(duì)的優(yōu)弧
平分弦所對(duì)的劣弧
三、弦、弧等與圓有關(guān)的定義
1、弦
連接圓上任意兩點(diǎn)的線段叫做弦。(如圖中的AB)
2、直徑
經(jīng)過(guò)圓心的弦叫做直徑。(如途中的CD)
直徑等于半徑的2倍。
3、半圓
圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫做半圓。
4、弧、優(yōu)弧、劣弧
圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱弧。
弧用符號(hào)“⌒”表示,以A,B為端點(diǎn)的弧記作“ ”,讀作“圓弧AB”或“弧AB”。
大于半圓的弧叫做優(yōu)弧(多用三個(gè)字母表示);小于半圓的弧叫做劣弧(多用兩個(gè)字母表示)
初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
一、圓
1、圓的有關(guān)性質(zhì)
在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點(diǎn)O叫圓心,線段OA叫半徑。
由圓的意義可知:
圓上各點(diǎn)到定點(diǎn)(圓心O)的距離等于定長(zhǎng)的點(diǎn)都在圓上。
就是說(shuō):圓是到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點(diǎn)的集合。
圓的外部可以看作是到圓心的距離大于半徑的點(diǎn)的集合。連結(jié)圓上任意兩點(diǎn)的線段叫做弦,經(jīng)過(guò)圓心的弦叫直徑。圓上任意兩點(diǎn)間的部分叫圓弧,簡(jiǎn)稱弧。
圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu)弧;小于半圓的弧叫劣弧。由弦及其所對(duì)的弧組成的圓形叫弓形。
圓心相同,半徑不相等的兩個(gè)圓叫同心圓。
能夠重合的兩個(gè)圓叫等圓。
同圓或等圓的半徑相等。
在同圓或等圓中,能夠互相重合的弧叫等弧。
二、過(guò)三點(diǎn)的圓
l、過(guò)三點(diǎn)的圓
過(guò)三點(diǎn)的圓的作法:利用中垂線找圓心
定理不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。
經(jīng)過(guò)三角形各頂點(diǎn)的圓叫三角形的外接圓,外接圓的圓心叫外心,這個(gè)三角形叫圓的內(nèi)接三角形。
2、反證法
反證法的三個(gè)步驟:
①假設(shè)命題的結(jié)論不成立;
②從這個(gè)假設(shè)出發(fā),經(jīng)過(guò)推理論證,得出矛盾;
③由矛盾得出假設(shè)不正確,從而肯定命題的結(jié)論正確。
例如:求證三角形中最多只有一個(gè)角是鈍角。
證明:設(shè)有兩個(gè)以上是鈍角
則兩個(gè)鈍角之和>180°
與三角形內(nèi)角和等于180°矛盾。
∴不可能有二個(gè)以上是鈍角。
即最多只能有一個(gè)是鈍角。
三、垂直于弦的直徑
圓是軸對(duì)稱圖形,經(jīng)過(guò)圓心的每一條直線都是它的對(duì)稱軸。
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧。
推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)兩條弧。
弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧。
平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一個(gè)條弧。
推理2:圓兩條平行弦所夾的弧相等。
四、圓心角、弧、弦、弦心距之間的關(guān)系
圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形。
實(shí)際上,圓繞圓心旋轉(zhuǎn)任意一個(gè)角度,都能夠與原來(lái)的圖形重合。
頂點(diǎn)是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。
定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦心距相等。
推理:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等。
五、圓周角
頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫圓周角。
推理1:同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等。
推理2:半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑。
推理3:如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。
由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。
初三數(shù)學(xué)重點(diǎn)公式
公式一:
設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
公式二:
設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α與-α的三角函數(shù)值之間的關(guān)系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
初三數(shù)學(xué)基礎(chǔ)知識(shí)點(diǎn)總結(jié)相關(guān)文章:
★ 初三數(shù)學(xué)知識(shí)點(diǎn)考點(diǎn)歸納總結(jié)
★ 初中數(shù)學(xué)基礎(chǔ)知識(shí)點(diǎn)總結(jié)
★ 初中數(shù)學(xué)基礎(chǔ)知識(shí)點(diǎn)歸納總結(jié)
★ 初三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)
★ 初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
★ 初中九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納
★ 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)大全
★ 初三數(shù)學(xué)中考復(fù)習(xí)重點(diǎn)章節(jié)知識(shí)點(diǎn)歸納