国产成人v爽在线免播放观看,日韩欧美色,久久99国产精品久久99软件,亚洲综合色网站,国产欧美日韩中文久久,色99在线,亚洲伦理一区二区

學習啦>學習方法>各學科學習方法>數(shù)學學習方法>

高中數(shù)學知識點全總結最全版

時間: 淑燕0 分享

高中數(shù)學知識點全總結最全版有哪些?高中數(shù)學小題一般是信息量少、運算量小,易于把握,不要輕易放過,應爭取在大題之前盡快解決,一起來看看高中數(shù)學知識點全總結最全版,歡迎查閱!

高中數(shù)學知識點


目錄

高中數(shù)學重點知識點

高考數(shù)學??贾R點

高中數(shù)學重點知識點講解


高中數(shù)學重點知識點

1.有理數(shù):

(1)凡能寫成形式的數(shù),都是有理數(shù),整數(shù)和分數(shù)統(tǒng)稱有理數(shù).

注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);?不是有理數(shù);

(2)有理數(shù)的分類:①②

(3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;

(4)自然數(shù)?0和正整數(shù);a>0?a是正數(shù);a<0?a是負數(shù);

a≥0?a是正數(shù)或0?a是非負數(shù);a≤0?a是負數(shù)或0?a是非正數(shù).

2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.

3.相反數(shù):(1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;(2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;

(3)相反數(shù)的和為0?a+b=0?a、b互為相反數(shù).

(4)相反數(shù)的商為-1.

(5)相反數(shù)的絕對值相等

4.絕對值:

(1)正數(shù)的絕對值等于它本身,0的絕對值是0,負數(shù)的絕對值等于它的相反數(shù);

注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;

(2)絕對值可表示為:或;

(3);;

(4)|a|是重要的非負數(shù),即|a|≥0;

5.有理數(shù)比大小:

(1)正數(shù)永遠比0大,負數(shù)永遠比0小;

(2)正數(shù)大于一切負數(shù);

(3)兩個負數(shù)比較,絕對值大的反而小;

(4)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;

(5)-1,-2,+1,+4,-0.5,以上數(shù)據(jù)表示與標準質量的差,絕對值越小,越接近標準。

6.倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);

注意:0沒有倒數(shù);若ab=1?a、b互為倒數(shù);若ab=-1?a、b互為負倒數(shù).

等于本身的數(shù)匯總:

相反數(shù)等于本身的數(shù):0

倒數(shù)等于本身的數(shù):1,-1

絕對值等于本身的數(shù):正數(shù)和0

平方等于本身的數(shù):0,1

立方等于本身的數(shù):0,1,-1.

7.有理數(shù)加法法則:

(1)同號兩數(shù)相加,取相同的`符號,并把絕對值相加;

(2)異號兩數(shù)相加,取絕對值較大加數(shù)的符號,并用較大的絕對值減去較小的絕對值;

(3)一個數(shù)與0相加,仍得這個數(shù).

8.有理數(shù)加法的運算律:

(1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c).

9.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b).

10有理數(shù)乘法法則:(1)兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘;

(2)任何數(shù)同零相乘都得零;

(3)幾個因式都不為零,積的符號由負因式的個數(shù)決定.奇數(shù)個負數(shù)為負,偶數(shù)個負數(shù)為正。

11有理數(shù)乘法的運算律:

(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac.(簡便運算)

12.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),.

13.有理數(shù)乘方的法則:(1)正數(shù)的任何次冪都是正數(shù);

(2)負數(shù)的奇次冪是負數(shù);負數(shù)的偶次冪是正數(shù);

14.乘方的定義:(1)求相同因式積的運算,叫做乘方;

(2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結果叫做冪;

(3)a2是重要的非負數(shù),即a2≥0;若a2+|b|=0?a=0,b=0;

(4)據(jù)規(guī)律底數(shù)的小數(shù)點移動一位,平方數(shù)的小數(shù)點移動二位.

15.科學記數(shù)法:把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學記數(shù)法.

16.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位.

17.混合運算法則:先乘方,后乘除,最后加減;注意:不省過程,不跳步驟。

18.特殊值法:是用符合題目要求的數(shù)代入,并驗證題設成立而進行猜想的一種方法,但不能用于證明.常用于填空,選擇。

<<<返回目錄

高考數(shù)學常考知識點

一、三角函數(shù)

1.周期函數(shù):一般地,對于函數(shù)f(x),如果存在一個不為0的常數(shù)T使得當x取定義域內的每一個值時,都有f(x+T)=f(x),那么函數(shù)f(x)就叫做周期函數(shù),非零常數(shù)T叫做這個函數(shù)的周期,把所有周期中存在的最小正數(shù),叫做最小正周期三角函數(shù)屬于高中數(shù)學中的重點內容,在高考理科數(shù)學中更是占據(jù)很重要的位置。

2.三角函數(shù)的圖像:可以利用三角函數(shù)線用幾何法作出,在精確度要求不高的情況下,常用五點法作圖,要特別注意“五點”的取法。

3.三角函數(shù)的定義域:三角函數(shù)的定義域是研究其他一切性質的前提,求三角函數(shù)的定義域實際上就是解最簡單的三角不等式,通常可用三角函數(shù)的圖像或三角函數(shù)線來求解,注意數(shù)形結合思想的應用。

二、反三角函數(shù)主要是三個:

y=arcsin(x),定義域[-1,1] ,值域[-π/2,π/2]圖象用紅色線條;

y=arccos(x),定義域[-1,1] , 值域[0,π],圖象用藍色線條;

y=arctan(x),定義域(-∞,+∞),值域(-π/2,π/2),圖象用綠色線條;

sin(arcsin x)=x,定義域[-1,1],值域 [-1,1] arcsin(-x)=-arcsinx

三、三角函數(shù)其他公式

arcsin(-x)=-arcsinx

arccos(-x)=π-arccosx

arctan(-x)=-arctanx

arccot(-x)=π-arccotx

arcsinx+arccosx=π/2=arctanx+arccotx

sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)

當x∈[—π/2,π/2]時,有arcsin(sinx)=x

當x∈[0,π],arccos(cosx)=x

x∈(—π/2,π/2),arctan(tanx)=x

x∈(0,π),arccot(cotx)=x

x〉0,arctanx=π/2-arctan1/x,arccotx類似

若(arctanx+arctany)∈(—π/2,π/2),則arctanx+arctany=arctan(x+y/1-xy)

四、三角函數(shù)與平面向量的綜合問題

(1)巧妙“轉化”--把以“向量的數(shù)量積、平面向量共線、平面向量垂直”“向量的線性運算”形式出現(xiàn)的條件還其本來面目,轉化為“對應坐標乘積之間的關系”;

(2)巧挖“條件”--利用隱含條件”正弦函數(shù)、余弦函數(shù)、的有界性“,把不等式的恒成立問題轉化為含參數(shù)ψ的方程,求出參數(shù)ψ的值,從而可求函數(shù)的解析式;

(3)活用”性質“--活用正弦函數(shù)與余弦函數(shù)的單調性、對稱性、周期性、奇偶性,以及整體換元思想,即可求其對稱軸與單調區(qū)間。

五、見三角函數(shù)“對稱”問題,啟用圖象特征代數(shù)關系:(A≠0)

1.函數(shù)y=Asin(wx+φ)和函數(shù)y=Acos(wx+φ)的圖象,關于過最值點且平行于y軸的`直線分別成軸對稱;

2.函數(shù)y=Asin(wx+φ)和函數(shù)y=Acos(wx+φ)的圖象,關于其中間零點分別成中心對稱;

3.同樣,利用圖象也可以得到函數(shù)y=Atan(wx+φ)和函數(shù)y=Acot(wx+φ)的對稱性質。

<<<返回目錄

高中數(shù)學重點知識點講解

直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

高中數(shù)學重點知識點講解:直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。在高中數(shù)學里直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當時,。當時,;當時,不存在。

②過兩點的直線的斜率公式:

注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關;

(3)以后高中數(shù)學涉及到求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

高中數(shù)學重點知識點講解:直線方程

①點斜式:

直線斜率k,且過點

注意:高中數(shù)學在關于直線方程解法中,當直線的斜率為0°時,k=0,直線的方程是y=y1。當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1。

②斜截式:,直線斜率為k,直線在y軸上的截距為b

③兩點式:()直線兩點,

④截矩式:

其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為。

⑤一般式:(A,B不全為0)

⑤一般式:(A,B不全為0)

注意:○1各式的適用范圍

○2特殊的方程如:平行于x軸的直線:

(b為常數(shù));平行于y軸的直線:

(a為常數(shù));

<<<返回目錄

高中數(shù)學知識點全總結最全版相關文章

高中數(shù)學知識點全總結最全版

高中數(shù)學學習方法:知識點總結最全版

高中數(shù)學知識點總結及公式大全

高中數(shù)學必考知識點歸納整理

高中數(shù)學知識點總結及公式大全(4)

高中數(shù)學知識點總結及公式大全(3)

高三數(shù)學學習方法和技巧大全

高一數(shù)學基礎知識學習方法歸納

2020高一數(shù)學學習方法總結大全

高一數(shù)學學習方法總結大全

825119