小學六年級數(shù)學知識點梳理
求學的三個條件是:多觀察、多吃苦、多研究。每一門科目都有自己的學習方法,但其實都是萬變不離其中的,也是要記、要背、要講練的。下面是小編給大家整理的一些六年級數(shù)學的知識點,希望對大家有所幫助。
六年級數(shù)學知識點
分數(shù)混合運算
1、分數(shù)混合運算的運算順序與整數(shù)混合運算的運算順序完全相同,都是先算乘除,再算加減,有括號的先算括號里的。
①如果是同一級運算,按照從左到右的順序依次計算。
②如果是分數(shù)連乘,可先進行約分,再進行計算;
③如果是分數(shù)乘除混合運算時,要先把除法轉換成乘法,然后按乘法運算。
2、解決問題
(1)用分數(shù)運算解決“求比已知量多(或少)幾分之幾的量是多少”的實際問題,方法是:
第①種方法:可以先求出多或少的具體量,再用單位“1”的量加或減去多或少的部分,求出要求的問題。
第②種方法:也可以用單位“1”加或減去多或少的幾分之幾,求出未知數(shù)占單位“1”的幾分之幾,再用單位“1”的量乘這個分數(shù)。
(2)“已知甲與乙的和,其中甲占和的幾分之幾,求乙數(shù)是多少?”
第①種方法:首先明確誰占單位“1”的幾分之幾,求出甲數(shù),再用單位“1”減去甲數(shù),求出乙數(shù)。
第②種方法:先用單位“1”減去已知甲數(shù)所占和的幾分之幾,即得未知乙數(shù)所占和的幾分之幾,再求出乙數(shù)。
(3)用方程解決稍復雜的分數(shù)應用題的步驟:
①要找準單位“1”。
②確定好其他量和單位“1”的量有什么關系,畫出關系圖,寫出等量關系式。
③設未知量為X,根據(jù)等量關系式,列出方程。
④解答方程。
(4)要記住以下幾種算術解法解應用題:
①對應數(shù)量÷對應分率=單位“1” 的量
②求一個數(shù)的幾分之幾是多少,用乘法計算。
③已知一個數(shù)的幾分之幾是多少,求這個數(shù),用除法計算,還可以用列方程解答。
3、要記住以下的解方程定律:
加數(shù) +加數(shù) = 和;
加數(shù) = 和–另一個加數(shù)。
被減數(shù)–減數(shù) = 差;
被減數(shù)=差+減數(shù);
減數(shù)=被減數(shù)–差。
因數(shù)×因數(shù) = 積;
因數(shù) = 積÷另一個因數(shù)。
被除數(shù)÷除數(shù) = 商;
被除數(shù)=商×除數(shù);
除數(shù)=被除數(shù)÷商。
4、繪制簡單線段圖的方法:
分數(shù)應用題,分兩種類型,一種是知道單位“1”的量用乘法,另一種是求單位“1”的量,用除法。這兩種類型應用題的數(shù)量關系可以分成三種:(一)一種量是另一種量的幾分之幾。(二)一種量比另一種量多幾分之幾。(三)一種量比另一種量少幾分之幾。繪制時關鍵處理好量與量之間的關系,在審題確定單位“1”的量。繪制步驟:
①首先用線段表示出這個單位“1”的量,畫在最上面,用直尺畫。
②分率的分母是幾就把單位“1”的量平均分成幾份,用直尺畫出平均的等分。標出相關的量。
③再繪制與單位“1”有關的量,根據(jù)實際是上面的三種關系中的哪一種再畫。標出相關的量。
④問題所求要標出“?”號和單位。
5、補充知識點
分數(shù)乘法:分數(shù)乘法的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)和的簡便運算。
分數(shù)乘法的計算法則
分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的積作分子,分母不變;分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零.。
分數(shù)乘法意義
分數(shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)的和的簡便運算。一個數(shù)與分數(shù)相乘,可以看作是求這個數(shù)的幾分之幾是多少。
分數(shù)乘整數(shù):數(shù)形結合、轉化化歸
倒數(shù):乘積是1的兩個數(shù)叫做互為倒數(shù)。
分數(shù)的倒數(shù)
找一個分數(shù)的倒數(shù),例如3/4 把3/4這個分數(shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/3。3/4是4/3的倒數(shù),也可以說4/3是3/4的倒數(shù)。
整數(shù)的倒數(shù)
找一個整數(shù)的倒數(shù),例如12,把12化成分數(shù),即12/1 ,再把12/1這個分數(shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是1/12 ,12是1/12的倒數(shù)。
六年級數(shù)學知識點歸納
體積和表面積
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a2
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的表面積=(長×寬+長×高+寬×高 ) ×2 公式:S=(a×b+a×c+b×c)×2
正方體的表面積=棱長×棱長×6 公式: S=6a2
長方體的體積=長×寬×高 公式:V = abh
長方體(或正方體)的體積=底面積×高 公式:V = abh
正方體的體積=棱長×棱長×棱長 公式:V = a3
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等于底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等于底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等于底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
數(shù)量關系計算公式
單價×數(shù)量=總價 2、單產量×數(shù)量=總產量
速度×時間=路程 4、工效×時間=工作總量
加數(shù)+加數(shù)=和 一個加數(shù)=和+另一個加數(shù)
被減數(shù)-減數(shù)=差 減數(shù)=被減數(shù)-差 被減數(shù)=減數(shù)+差
因數(shù)×因數(shù)=積 一個因數(shù)=積÷另一個因數(shù)
被除數(shù)÷除數(shù)=商 除數(shù)=被除數(shù)÷商 被除數(shù)=商×除數(shù)
六年級數(shù)學必考知識點
1.比和比例的意義
比的意義是兩個數(shù)的除又叫做兩個數(shù)的比,而比例的意義是表示兩個比相等的式子是叫做比例。比是表示兩個數(shù)相除,有兩項;比例是一個等式,表示兩個比相等,有四項。因此,比和比例的意義也有所不同。而且,比號沒有括號的含義而另一種形式,分數(shù)有括號的含義!
2.比的基本性質:比的前項和后項都乘以或除以一個不為零的數(shù)。比值不變。用于化簡比。
3.比例的性質:在比例里,兩個外項的乘積等于兩個內項的乘積。比例的性質用于解比例。
4.比和比例的聯(lián)系:
比和比例有著密切聯(lián)系。比是研究兩個量之間的關系,所以它有兩項;比例是研究相關聯(lián)的兩種量中兩組相對應數(shù)的關系,所以比例是由四項組成。比例是由比組成的,成比例的兩個比的比值一定相等。
5.比和比例的區(qū)別
(1)意義、項數(shù)、各部分名稱不同。比表示兩個數(shù)相除;只有兩個項:比的前項和后項。如:a:b這是比比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內項。a:b=3:4這是比例。
(2)比的基本性質和比例的基本性質意義不同、應用不同。聯(lián)系:比例是由兩個相等的比組成。
6.正比例:若A擴大或縮小幾倍,B也擴大或縮小幾倍(AB的商不變時),則A與B成正比。反比例:若A擴大或縮小幾倍,B也縮小或擴大幾倍(AB的積不變時),則A與B成反比。比例尺:圖上距離與實際距離的比叫做比例尺。
六年級數(shù)學學習方法
良好的學習習慣是一種良好的非智力因素,是學生必備的素質,是學好數(shù)學的最基本保證。小學數(shù)學學習習慣的培養(yǎng),需要堅持不懈,持之以恒。
1.課前預習的習慣。
有效的預習,能提高學習新知識的目的性和針對性,可以提高學習的質量。通過布置預習提綱的方法來進行,以后逐步過渡到只布置預習內容,讓學生自己去讀書、去發(fā)現(xiàn)問題,讓學生課前對新知識有所了解。有些課上沒有條件、沒有時間做的活動,也可以讓學生課前去做。如講統(tǒng)計表時,就可以讓學生課前調查好同組同學的身高、體重等數(shù)據(jù)。
2.認真聽“講”的習慣。
這里的聽“講”,應包括兩方面的意思:一是說課堂上,精力要集中,不做與學習無關的動作,要認真傾聽老師的點撥、指導,要抓住新知識的生長點,新舊知識的聯(lián)系,弄清公式、法則的來龍去脈。二是說要認真地聽其他同學的發(fā)言,對他人的觀點、回答能做出評價和必要的補充。
3.認真完成作業(yè)的習慣。
完成作業(yè),是學生最基本、最經常的學習實踐活動。要求學生從小就養(yǎng)成:(1)規(guī)范書寫,保持書寫清潔的習慣。作業(yè)的格式、數(shù)字的書寫、數(shù)學符號的書寫都要規(guī)范。(2)良好的行為習慣。要獨立思考,獨立完成作業(yè),不要跟別人對算式和結果,更不要抄襲別人的作業(yè)。(3)認真審題,仔細運算的習慣。(4)驗算的習慣。
小學六年級數(shù)學知識點梳理相關文章: