初中中考數(shù)學(xué)的知識(shí)點(diǎn)
知識(shí)點(diǎn)就是指知識(shí)、理論、道理、思想等的相對獨(dú)立的最小單元。下面小編為大家?guī)沓踔兄锌紨?shù)學(xué)的知識(shí)點(diǎn),歡迎大家參考閱讀,希望能夠幫助到大家!
初中中考數(shù)學(xué)的知識(shí)點(diǎn)
二次函數(shù)的解析式有三種形式:
(1)一般式:
(2)頂點(diǎn)式:
(3)當(dāng)拋物線與x軸有交點(diǎn)時(shí),即對應(yīng)二次好方程有實(shí)根和存在時(shí),根據(jù)二次三項(xiàng)式的分解因式,二次函數(shù)可轉(zhuǎn)化為兩根式。如果沒有交點(diǎn),則不能這樣表示。
注意:拋物線位置由決定.
(1)決定拋物線的開口方向
①開口向上.
②開口向下.
(2)決定拋物線與y軸交點(diǎn)的位置.
①圖象與y軸交點(diǎn)在x軸上方.
②圖象過原點(diǎn).
③圖象與y軸交點(diǎn)在x軸下方.
(3)決定拋物線對稱軸的位置(對稱軸:)
①同號(hào)對稱軸在y軸左側(cè).
②對稱軸是y軸.
③異號(hào)對稱軸在y軸右側(cè).
(4)頂點(diǎn)坐標(biāo).
(5)決定拋物線與x軸的交點(diǎn)情況.、
①△>0拋物線與x軸有兩個(gè)不同交點(diǎn).
②△=0拋物線與x軸有的公共點(diǎn)(相切).
③△<0拋物線與x軸無公共點(diǎn).
(6)二次函數(shù)是否具有、最小值由a判斷.
①當(dāng)a>0時(shí),拋物線有最低點(diǎn),函數(shù)有最小值.
②當(dāng)a<0時(shí),拋物線有點(diǎn),函數(shù)有值.
(7)的符號(hào)的判定:
表達(dá)式,請代值,對應(yīng)y值定正負(fù);
對稱軸,用處多,三種式子相約;
軸兩側(cè)判,左同右異中為0;
1的兩側(cè)判,左同右異中為0;
-1兩側(cè)判,左異右同中為0.
(8)函數(shù)圖象的平移:左右平移變x,左+右-;上下平移變常數(shù)項(xiàng),上+下-;平移結(jié)果先知道,反向平移是訣竅;平移方式不知道,通過頂點(diǎn)來尋找。
(9)對稱:關(guān)于x軸對稱的解析式為,關(guān)于y軸對稱的解析式為,關(guān)于原點(diǎn)軸對稱的解析式為,在頂點(diǎn)處翻折后的解析式為(a相反,定點(diǎn)坐標(biāo)不變)。
(10)結(jié)論:①二次函數(shù)(與x軸只有一個(gè)交點(diǎn)二次函數(shù)的頂點(diǎn)在x軸上Δ=0;
②二次函數(shù)(的頂點(diǎn)在y軸上二次函數(shù)的圖象關(guān)于y軸對稱;
③二次函數(shù)(經(jīng)過原點(diǎn),則。
(11)二次函數(shù)的解析式:
①一般式:(,用于已知三點(diǎn)。
②頂點(diǎn)式:,用于已知頂點(diǎn)坐標(biāo)或最值或?qū)ΨQ軸。
(3)交點(diǎn)式:,其中、是二次函數(shù)與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo)。若已知對稱軸和在x軸上的截距,也可用此式。
中考數(shù)學(xué)知識(shí)點(diǎn)梳理
三角函數(shù)關(guān)系
倒數(shù)關(guān)系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的關(guān)系
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關(guān)系
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函數(shù)關(guān)系六角形記憶法
構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。
倒數(shù)關(guān)系
對角線上兩個(gè)函數(shù)互為倒數(shù);
商數(shù)關(guān)系
六邊形任意一頂點(diǎn)上的函數(shù)值等于與它相鄰的兩個(gè)頂點(diǎn)上函數(shù)值的乘積。(主要是兩條虛線兩端的三角函數(shù)值的乘積,下面4個(gè)也存在這種關(guān)系。)。由此,可得商數(shù)關(guān)系式。
平方關(guān)系
在帶有陰影線的三角形中,上面兩個(gè)頂點(diǎn)上的三角函數(shù)值的平方和等于下面頂點(diǎn)上的三角函數(shù)值的平方。
銳角三角函數(shù)定義
銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。
正弦(sin)等于對邊比斜邊;sinA=a/c
余弦(cos)等于鄰邊比斜邊;cosA=b/c
正切(tan)等于對邊比鄰邊;tanA=a/b
余切(cot)等于鄰邊比對邊;cotA=b/a
正割(sec)等于斜邊比鄰邊;secA=c/b
余割(csc)等于斜邊比對邊。cscA=c/a
互余角的三角函數(shù)間的關(guān)系
sin(90°-α)=cosα,cos(90°-α)=sinα,
tan(90°-α)=cotα,cot(90°-α)=tanα.
平方關(guān)系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
積的關(guān)系:
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒數(shù)關(guān)系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
圓的定理:
1不在同一直線上的三點(diǎn)確定一個(gè)圓。
2垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3圓是以圓心為對稱中心的中心對稱圖形
4圓是定點(diǎn)的距離等于定長的點(diǎn)的集合
5圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7同圓或等圓的半徑相等
8到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓
9定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
10推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。
中考數(shù)學(xué)知識(shí)點(diǎn)整理
圓的定理:
1不在同一直線上的三點(diǎn)確定一個(gè)圓。
2垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3圓是以圓心為對稱中心的中心對稱圖形
4圓是定點(diǎn)的距離等于定長的點(diǎn)的集合
5圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7同圓或等圓的半徑相等
8到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓
9定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
10推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等