国产成人v爽在线免播放观看,日韩欧美色,久久99国产精品久久99软件,亚洲综合色网站,国产欧美日韩中文久久,色99在线,亚洲伦理一区二区

學(xué)習(xí)啦 > 教育資訊 > 熱點(diǎn) > 最新2023高考數(shù)學(xué)必背知識(shí)點(diǎn)歸納

最新2023高考數(shù)學(xué)必背知識(shí)點(diǎn)歸納

時(shí)間: 夢(mèng)熒0 分享

最新2023高考數(shù)學(xué)必背知識(shí)點(diǎn)歸納(一覽)

高考正在緊張的復(fù)習(xí)中,不要慌做好各科知識(shí)點(diǎn)的歸納。那高考數(shù)學(xué)知識(shí)點(diǎn)有哪些呢?我們?cè)撛趺磸?fù)習(xí)呢?以下是小編整理的一些最新2023高考數(shù)學(xué)必背知識(shí)點(diǎn)歸納,歡迎閱讀參考。

高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

一、集合與函數(shù)

1.進(jìn)行集合的交、并、補(bǔ)運(yùn)算時(shí),不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進(jìn)行求解。

2.在應(yīng)用條件時(shí),易A忽略是空集的情況

3.你會(huì)用補(bǔ)集的思想解決有關(guān)問題嗎?

4.簡(jiǎn)單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?

5.你知道“否命題”與“命題的否定形式”的區(qū)別。

6.求解與函數(shù)有關(guān)的問題易忽略定義域優(yōu)先的原則。

7.判斷函數(shù)奇偶性時(shí),易忽略檢驗(yàn)函數(shù)定義域是否關(guān)于原點(diǎn)對(duì)稱。

8.求一個(gè)函數(shù)的解析式和一個(gè)函數(shù)的反函數(shù)時(shí),易忽略標(biāo)注該函數(shù)的定義域。

9.原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個(gè)函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào)。例如:。

10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值, 作差, 判正負(fù))和導(dǎo)數(shù)法

11. 求函數(shù)單調(diào)性時(shí),易錯(cuò)誤地在多個(gè)單調(diào)區(qū)間之間添加符號(hào)“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示。

12.求函數(shù)的值域必須先求函數(shù)的定義域。

13.如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?

①比較函數(shù)值的大小;

②解抽象函數(shù)不等式;

③求參數(shù)的范圍(恒成立問題).這幾種基本應(yīng)用你掌握了嗎?

14.解對(duì)數(shù)函數(shù)問題時(shí),你注意到真數(shù)與底數(shù)的限制條件了嗎?

(真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論

15.三個(gè)二次(哪三個(gè)二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值?

16.用換元法解題時(shí)易忽略換元前后的等價(jià)性,易忽略參數(shù)的范圍。

17.“實(shí)系數(shù)一元二次方程有實(shí)數(shù)解”轉(zhuǎn)化時(shí),你是否注意到:當(dāng)時(shí),“方程有解”不能轉(zhuǎn)化為。若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項(xiàng)系數(shù)可能為的零的情形?

二、不等式

1.利用均值不等式求最值時(shí),你是否注意到:“一正;二定;三等”.

2.絕對(duì)值不等式的解法及其幾何意義是什么?

3.解分式不等式應(yīng)注意什么問題?用“根軸法”解整式(分式)不等式的注意事項(xiàng)是什么?

4.解含參數(shù)不等式的通法是“定義域?yàn)榍疤?,函?shù)的單調(diào)性為基礎(chǔ),分類討論是關(guān)鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”.

5. 在求不等式的解集、定義域及值域時(shí),其結(jié)果一定要用集合或區(qū)間表示;不能用不等式表示。

6. 兩個(gè)不等式相乘時(shí),必須注意同向同正時(shí)才能相乘,即同向同正可乘;同時(shí)要注意“同號(hào)可倒”即a>b>0,a

三、數(shù)列

1.解決一些等比數(shù)列的前項(xiàng)和問題,你注意到要對(duì)公比及兩種情況進(jìn)行討論了嗎?

2.在“已知,求”的問題中,你在利用公式時(shí)注意到了嗎?(時(shí),應(yīng)有)需要驗(yàn)證,有些題目通項(xiàng)是分段函數(shù)。

3.你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無窮數(shù)列的概念嗎?你知道無窮數(shù)列的前項(xiàng)和與所有項(xiàng)的和的不同嗎?什么樣的無窮等比數(shù)列的所有項(xiàng)的和必定存在?

4.數(shù)列單調(diào)性問題能否等同于對(duì)應(yīng)函數(shù)的單調(diào)性問題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。)

5.應(yīng)用數(shù)學(xué)歸納法一要注意步驟齊全,二要注意從到過程中,先假設(shè)時(shí)成立,再結(jié)合一些數(shù)學(xué)方法用來證明時(shí)也成立。

四、三角函數(shù)

1.正角、負(fù)角、零角、象限角的概念你清楚嗎,若角的終邊在坐標(biāo)軸上,那它歸哪個(gè)象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?

2.三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎?

3. 在解三角問題時(shí),你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?

4. 你還記得三角化簡(jiǎn)的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角。 異角化同角,異名化同名,高次化低次)

5. 反正弦、反余弦、反正切函數(shù)的取值范圍分別是

6.你還記得某些特殊角的三角函數(shù)值嗎?

7.掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì)。你會(huì)寫三角函數(shù)的單調(diào)區(qū)間嗎?會(huì)寫簡(jiǎn)單的三角不等式的解集嗎?(要注意數(shù)形結(jié)合與書寫規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過怎樣的變換得到嗎?

五、平面向量

1..數(shù)0有區(qū)別,的模為數(shù)0,它不是沒有方向,而是方向不定。可以看成與任意向量平行,但與任意向量都不垂直。

2..數(shù)量積與兩個(gè)實(shí)數(shù)乘積的區(qū)別:

在實(shí)數(shù)中:若,且ab=0,則b=0,但在向量的數(shù)量積中,若,且,不能推出。

已知實(shí)數(shù),且,則a=c,但在向量的數(shù)量積中沒有。

在實(shí)數(shù)中有,但是在向量的數(shù)量積中,這是因?yàn)樽筮吺桥c共線的向量,而右邊是與共線的向量。

3.是向量與平行的充分而不必要條件,是向量和向量夾角為鈍角的必要而不充分條件。

六、解析幾何

1.在用點(diǎn)斜式、斜截式求直線的方程時(shí),你是否注意到不存在的情況?

2.用到角公式時(shí),易將直線l1、l2的斜率k1、k2的順序弄顛倒。

3.直線的傾斜角、到的角、與的夾角的取值范圍依次是。

4. 定比分點(diǎn)的坐標(biāo)公式是什么?(起點(diǎn),中點(diǎn),分點(diǎn)以及值可要搞清),在利用定比分點(diǎn)解題時(shí),你注意到了嗎?

5. 對(duì)不重合的兩條直線

(建議在解題時(shí),討論后利用斜率和截距)

6. 直線在兩坐標(biāo)軸上的截距相等,直線方程可以理解為,但不要忘記當(dāng)時(shí),直線在兩坐標(biāo)軸上的截距都是0,亦為截距相等。

7.解決線性規(guī)劃問題的基本步驟是什么?請(qǐng)你注意解題格式和完整的文字表達(dá)。

①設(shè)出變量,寫出目標(biāo)函數(shù)

②寫出線性約束條件

③畫出可行域

④作出目標(biāo)函數(shù)對(duì)應(yīng)的系列平行線,找到并求出最優(yōu)解

8.三種圓錐曲線的定義、圖形、標(biāo)準(zhǔn)方程、幾何性質(zhì),橢圓與雙曲線中的兩個(gè)特征三角形你掌握了嗎?

9.圓、和橢圓的參數(shù)方程是怎樣的?常用參數(shù)方程的方法解決哪一些問題?

10.利用圓錐曲線第二定義解題時(shí),你是否注意到定義中的定比前后項(xiàng)的順序?如何利用第二定義推出圓錐曲線的焦半徑公式?如何應(yīng)用焦半徑公式?

11. 通徑是拋物線的所有焦點(diǎn)弦中最短的弦。(想一想在雙曲線中的結(jié)論?)

12. 在用圓錐曲線與直線聯(lián)立求解時(shí),消元后得到的方程中要注意:二次項(xiàng)的系數(shù)是否為零?橢圓,雙曲線二次項(xiàng)系數(shù)為零時(shí)直線與其只有一個(gè)交點(diǎn),判別式的限制。(求交點(diǎn),弦長,中點(diǎn),斜率,對(duì)稱,存在性問題都在下進(jìn)行).

13.解析幾何問題的求解中,平面幾何知識(shí)利用了嗎?題目中是否已經(jīng)有坐標(biāo)系了,是否需要建立直角坐標(biāo)系?

七、立體幾何

1.你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測(cè)畫法)。

2.線面平行和面面平行的定義、判定和性質(zhì)定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯(lián)系和轉(zhuǎn)化在解決立幾問題中的應(yīng)用是怎樣的?每種平行之間轉(zhuǎn)換的條件是什么?

3.三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關(guān)鍵是什么嗎?(一面、四線、三垂直、立柱即面的垂線是關(guān)鍵)一面四直線,立柱是關(guān)鍵,垂直三處見

4.線面平行的判定定理和性質(zhì)定理在應(yīng)用時(shí)都是三個(gè)條件,但這三個(gè)條件易混為一談;面面平行的判定定理易把條件錯(cuò)誤地記為”一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面內(nèi)的兩條相交直線分別平行”而導(dǎo)致證明過程跨步太大。

5.求兩條異面直線所成的角、直線與平面所成的角和二面角時(shí),如果所求的角為90°,那么就不要忘了還有一種求角的方法即用證明它們垂直的方法。

6.異面直線所成角利用“平移法”求解時(shí),一定要注意平移后所得角等于所求角(或其補(bǔ)角),特別是題目告訴異面直線所成角,應(yīng)用時(shí)一定要從題意出發(fā),是用銳角還是其補(bǔ)角,還是兩種情況都有可能。

7.你知道公式:和中每一字母的意思嗎?能夠熟練地應(yīng)用它們解題嗎?

8. 兩條異面直線所成的角的范圍:0°<α≤90°< p="">

直線與平面所成的角的范圍:0o≤α≤90°

高考數(shù)學(xué)的知識(shí)點(diǎn)歸納

一、簡(jiǎn)單的邏輯聯(lián)結(jié)詞

1.用聯(lián)結(jié)詞且聯(lián)結(jié)命題p和命題q,記作pq,讀作p且q.

2.用聯(lián)結(jié)詞或聯(lián)結(jié)命題p和命題q,記作pq,讀作p或q.

3.對(duì)一個(gè)命題p全盤否定,就得到一個(gè)新命題,記作綈p,讀作非p或p的否定.

4.命題pq,pq,綈p的真假判斷:

pq中p、q有一假為假,pq有一真為真,p與非p必定是一真一假.

二、全稱量詞與存在量詞

1.全稱量詞與全稱命題

(1)短語所有的任意一個(gè)在邏輯中通常叫做全稱量詞,并用符號(hào)表示.

(2)含有全稱量詞的命題,叫做全稱命題.

(3)全稱命題對(duì)M中任意一個(gè)x,有p(x)成立可用符號(hào)簡(jiǎn)記為xM,p(x),讀作對(duì)任意x屬于M,有p(x)成立.

2.存在量詞與特稱命題

(1)短語存在一個(gè)至少有一個(gè)在邏輯中通常叫做存在量詞,并用符號(hào)表示.

(2)含有存在量詞的命題,叫做特稱命題.

(3)特稱命題存在M中的一個(gè)x0,使p(x0)成立可用符號(hào)簡(jiǎn)記為x0M,P(x0),讀作存在M中的元素x0,使p(x0)成立.

三、含有一個(gè)量詞的命題的否定

四、解題思路

1.邏輯聯(lián)結(jié)詞與集合的關(guān)系

或、且、非三個(gè)邏輯聯(lián)結(jié)詞,對(duì)應(yīng)著集合運(yùn)算中的并、交、補(bǔ),因此,常常借助集合的并、交、補(bǔ)的意義來解答由或、且、非三個(gè)聯(lián)結(jié)詞構(gòu)成的命題問題.

2.正確區(qū)別命題的否定與否命題

否命題是對(duì)原命題若p,則q的條件和結(jié)論分別加以否定而得到的命題,它既否定其條件,又否定其結(jié)論;命題的否定即非p,只是否定命題p的結(jié)論. 命題的否定與原命題的真假總是對(duì)立的,即兩者中有且只有一個(gè)為真,而原命題與否命題的真假無必然聯(lián)系.

3.全稱命題真假的判斷方法

(1)要判斷一個(gè)全稱命題是真命題,必須對(duì)限定的集合M中的每一個(gè)元素x,證明p(x)成立;

(2)要判斷一個(gè)全稱命題是假命題,只要能舉出集合M中的一個(gè)特殊值x=x0,使p(x0)不成立即可.

4.特稱命題真假的判斷方法

要判斷一個(gè)特稱命題是真命題,只要在限定的集合M中,找到一個(gè)x=x0,使p(x0)成立即可,否則這一特稱命題就是假命題.

數(shù)學(xué)高考知識(shí)點(diǎn)精選總結(jié)

①正棱錐各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高).

②正棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形,正棱錐的高、側(cè)棱、側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形.

⑶特殊棱錐的頂點(diǎn)在底面的射影位置:

①棱錐的側(cè)棱長均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心.

②棱錐的`側(cè)棱與底面所成的角均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心.

③棱錐的各側(cè)面與底面所成角均相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心.

④棱錐的頂點(diǎn)到底面各邊距離相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心.

⑤三棱錐有兩組對(duì)棱垂直,則頂點(diǎn)在底面的射影為三角形垂心.

⑥三棱錐的三條側(cè)棱兩兩垂直,則頂點(diǎn)在底面上的射影為三角形的垂心.

⑦每個(gè)四面體都有外接球,球心0是各條棱的中垂面的交點(diǎn),此點(diǎn)到各頂點(diǎn)的距離等于球半徑;

⑧每個(gè)四面體都有內(nèi)切球,球心

是四面體各個(gè)二面角的平分面的交點(diǎn),到各面的距離等于半徑.

[注]:i.各個(gè)側(cè)面都是等腰三角形,且底面是正方形的棱錐是正四棱錐.(×)(各個(gè)側(cè)面的等腰三角形不知是否全等)

ii.若一個(gè)三角錐,兩條對(duì)角線互相垂直,則第三對(duì)角線必然垂直.

簡(jiǎn)證:AB⊥CD,AC⊥BD

BC⊥AD.令得,已知?jiǎng)t.

iii.空間四邊形OABC且四邊長相等,則順次連結(jié)各邊的中點(diǎn)的四邊形一定是矩形.

iv.若是四邊長與對(duì)角線分別相等,則順次連結(jié)各邊的中點(diǎn)的四邊是一定是正方形.

簡(jiǎn)證:取AC中點(diǎn),則平面90°易知EFGH為平行四邊形

EFGH為長方形.若對(duì)角線等,則為正方形.

數(shù)學(xué)高考知識(shí)點(diǎn)精選總結(jié)5篇4

一個(gè)推導(dǎo)

利用錯(cuò)位相減法推導(dǎo)等比數(shù)列的前n項(xiàng)和:

Sn=a1+a1q+a1q2+…+a1qn-1,

同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,

兩式相減得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).

兩個(gè)防范

(1)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗(yàn)證a1≠0.

(2)在運(yùn)用等比數(shù)列的前n項(xiàng)和公式時(shí),必須注意對(duì)q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導(dǎo)致解題失誤.

三種方法

等比數(shù)列的判斷方法有:

(1)定義法:若an+1/an=q(q為非零常數(shù))或an/an-1=q(q為非零常數(shù)且n≥2且n∈N_,則{an}是等比數(shù)列.

(2)中項(xiàng)公式法:在數(shù)列{an}中,an≠0且a=an·an+2(n∈N_,則數(shù)列{an}是等比數(shù)列.

(3)通項(xiàng)公式法:若數(shù)列通項(xiàng)公式可寫成an=c·qn(c,q均是不為0的常數(shù),n∈N_,則{an}是等比數(shù)列.

注:前兩種方法也可用來證明一個(gè)數(shù)列為等比數(shù)列.

1865452