国产成人v爽在线免播放观看,日韩欧美色,久久99国产精品久久99软件,亚洲综合色网站,国产欧美日韩中文久久,色99在线,亚洲伦理一区二区

學(xué)習(xí)啦 > 教育資訊 > 熱點 >

六年級上冊數(shù)學(xué)知識點最新

時間: 淑燕24594 分享

數(shù)學(xué)既可以來自現(xiàn)實世界的直接抽象,也可以來自人類思維的勞動創(chuàng)造。那么你知道六年級上冊數(shù)學(xué)知識點有哪些嗎?這次小編給大家整理了六年級上冊數(shù)學(xué)知識點,供大家閱讀參考。

六年級上冊數(shù)學(xué)知識點最新

六年級上冊數(shù)學(xué)知識點

第一部分 數(shù)與代數(shù)

一、分?jǐn)?shù)乘法

(一)分?jǐn)?shù)乘法的計算法則:

1、分?jǐn)?shù)與整數(shù)相乘:分子與整數(shù)相乘的積做分子,分母不變。(整數(shù)和分母約分)

2、分?jǐn)?shù)與分?jǐn)?shù)相乘:用分子相乘的積做分子,分母相乘的積做分母。

3、為了計算簡便,能約分的要先約分,再計算。

注意:當(dāng)帶分?jǐn)?shù)進(jìn)行乘法計算時,要先把帶分?jǐn)?shù)化成假分?jǐn)?shù)再進(jìn)行計算。

(二)規(guī)律:(乘法中比較大小時)

一個數(shù)(0除外)乘大于1的數(shù),積大于這個數(shù)。

一個數(shù)(0除外)乘小于1的數(shù)(0除外),積小于這個數(shù)。

一個數(shù)(0除外)乘1,積等于這個數(shù)。

(三)分?jǐn)?shù)混合運算的運算順序和整數(shù)的運算順序相同。

(四)整數(shù)乘法的交換律、結(jié)合律和分配律,對于分?jǐn)?shù)乘法也同樣適用。

乘法交換律:a×b=b×a

乘法結(jié)合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=ac+bc ac+bc=(a+b)×c

二、分?jǐn)?shù)乘法的解決問題(詳細(xì)見重難點分解)

(已知單位“1”的量(用乘法),求單位“1”的幾分之幾是多少)

1、找單位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”的后面

2、求一個數(shù)的幾倍: 一個數(shù)×幾倍; 求一個數(shù)的幾分之幾是多少: 一個數(shù)× 。

3、寫數(shù)量關(guān)系式技巧:

(1)“的”相當(dāng)于 “×”(乘號)

“占”、“是”、“比”“相當(dāng)于”相當(dāng)于“=”(等號)

(2)分率前是“的”:

單位“1”的量×分率=分率對應(yīng)量

(3)分率前是“多或少”的意思:

單位“1”的量×(1±分率)=分率的對應(yīng)量

二、分?jǐn)?shù)除法

(一)倒數(shù)

1、倒數(shù)的意義: 乘積是1的兩個數(shù)互為倒數(shù)。

強調(diào):互為倒數(shù),即倒數(shù)是兩個數(shù)的關(guān)系,它們互相依存,倒數(shù)不能單獨存在。(要說清誰是誰的倒數(shù))。

2、求倒數(shù)的方法:(原數(shù)與倒數(shù)之間不要寫等號哦)

(1)求分?jǐn)?shù)的倒數(shù):交換分子分母的位置。

(2)求整數(shù)的倒數(shù):把整數(shù)看做分母是1的分?jǐn)?shù),再交換分子分母的位置。

(3)求帶分?jǐn)?shù)的倒數(shù):把帶分?jǐn)?shù)化為假分?jǐn)?shù),再求倒數(shù)。

(4)求小數(shù)的倒數(shù): 把小數(shù)化為分?jǐn)?shù),再求倒數(shù)。

3、因為1×1=1,1的倒數(shù)是1;

因為找不到與0相乘得1的數(shù)0沒有倒數(shù)。

4、對于任意數(shù)a(a≠0),它的倒數(shù)為1/a;非零整數(shù)a的倒數(shù)為1/a;分?jǐn)?shù)b/a的倒數(shù)是a/b;

5、真分?jǐn)?shù)的倒數(shù)大于1;假分?jǐn)?shù)的倒數(shù)小于或等于1;帶分?jǐn)?shù)的倒數(shù)小于1。

(二)分?jǐn)?shù)除法

1、分?jǐn)?shù)除法的意義:

分?jǐn)?shù)除法與整數(shù)除法的意義相同,表示已知兩個因數(shù)的積和其中一個因數(shù),求另一個因數(shù)的運算。

2、分?jǐn)?shù)除法的計算法則: 除以一個不為0的數(shù),等于乘這個數(shù)的倒數(shù)。

3、規(guī)律(分?jǐn)?shù)除法比較大小時):

(1)當(dāng)除數(shù)大于1,商小于被除數(shù);

(2)當(dāng)除數(shù)小于1(不等于0),商大于被除數(shù);

(3)、當(dāng)除數(shù)等于1,商等于被除數(shù)。

4、“[ ] ”叫做中括號。一個算式里,如果既有小括號,又有中括號,要先算小括號里面的,再算中括號里面的。

(三)分?jǐn)?shù)除法解決問題(詳細(xì)見重難點分解)

(未知單位“1”的量(用除法): 已知單位“1”的幾分之幾是多少,求單位“1”的量。 )

1、數(shù)量關(guān)系式和分?jǐn)?shù)乘法解決問題中的關(guān)系式相同:

(1)分率前是“的”:

單位“1”的量×分率=分率對應(yīng)量

(2)分率前是“多或少”的意思:

單位“1”的量×(1 分率)=分率對應(yīng)量

2、解法:(建議:用方程解答)

(1)方程:根據(jù)數(shù)量關(guān)系式設(shè)未知量為x,用方程解答。

(2)算術(shù)(用除法):分率對應(yīng)量÷對應(yīng)分率 = 單位“1”的量

3、求一個數(shù)是另一個數(shù)的幾分之幾:就用一個數(shù)÷另一個數(shù)

4、求一個數(shù)比另一個數(shù)多(少)幾分之幾:

① 求多幾分之幾:大數(shù)÷小數(shù) ?C 1

② 求少幾分之幾: 1 - 小數(shù)÷大數(shù)

或①求多幾分之幾(大數(shù)-小數(shù))÷小數(shù)

② 求少幾分之幾:(大數(shù)-小數(shù))÷大數(shù)

(四)比和比的應(yīng)用

1、比的意義:兩個數(shù)相除又叫做兩個數(shù)的比。

2、在兩個數(shù)的比中,比號前面的數(shù)叫做比的前項,比號后面的數(shù)叫做比的后項。比的前項除以后項所得的商,叫做比值(比值通常用分?jǐn)?shù)表示,也可以用小數(shù)或整數(shù)表示)。

例如

15 : 10 = 15÷10=1.5

∶ ∶ ∶ ∶

前項 比號 后項 比值

3、比可以表示兩個相同量的關(guān)系,即倍數(shù)關(guān)系。也可以表示兩個不同量的比,得到一個新量。

例: 路程÷速度=時間。

4、區(qū)分比和比值

比:表示兩個數(shù)的關(guān)系,可以寫成比的形式,也可以用分?jǐn)?shù)表示。

比值:相當(dāng)于商,是一個數(shù),可以是整數(shù),分?jǐn)?shù),也可以是小數(shù)。

5、根據(jù)分?jǐn)?shù)與除法的關(guān)系,兩個數(shù)的比也可以寫成分?jǐn)?shù)形式。

6、比和除法、分?jǐn)?shù)的聯(lián)系:

7、比和除法、分?jǐn)?shù)的區(qū)別:除法是一種運算,分?jǐn)?shù)是一個數(shù),比表示兩個數(shù)的關(guān)系。

8、根據(jù)比與除法、分?jǐn)?shù)的關(guān)系,可以理解比的后項不能為0。

體育比賽中出現(xiàn)兩隊的分是2:0等,這只是一種記分的形式,不表示兩個數(shù)相除的關(guān)系。

(五)比的基本性質(zhì)

1、根據(jù)比、除法、分?jǐn)?shù)的關(guān)系:

商不變的性質(zhì):被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(0除外),商不變。

分?jǐn)?shù)的基本性質(zhì):分?jǐn)?shù)的分子和分母同時乘或除以相同的數(shù)時(0除外),分?jǐn)?shù)值不變。

比的基本性質(zhì):比的前項和后項同時乘或除以相同的數(shù)(0除外),比值不變。

2、最簡整數(shù)比:比的前項和后項都是整數(shù),并且是互質(zhì)數(shù),這樣的比就是最簡整數(shù)比。

3、根據(jù)比的基本性質(zhì),可以把比化成最簡單的整數(shù)比。

4.化簡比:

(1)用比的基本性質(zhì)化簡

①用比的前項和后項同時除以它們的公因數(shù)。

②兩個分?jǐn)?shù)的比:用前項后項同時乘分母的最小公倍數(shù),再按化簡整數(shù)比的方法來化簡。

③兩個小數(shù)的比:向右移動小數(shù)點的位置,先化成整數(shù)比再化簡。

(2)用求比值的方法。注意: 最后結(jié)果要寫成比的形式。

5.按比例分配:把一個數(shù)量按照一定的比來進(jìn)行分配。這種方法通常叫做按比例分配。

如: 已知兩個量之比為 ,則設(shè)這兩個量分別為 。

6、路程一定,速度比和時間比成反比。(如:路程相同,速度比是4:5,時間比則為5:4)

工作總量一定,工作效率和工作時間成反比。

(如:工作總量相同,工作時間比是3:2,工作效率比則是2:3)

三、百分?jǐn)?shù)

(一)百分?jǐn)?shù)的意義和寫法

1、百分?jǐn)?shù)的意義:表示一個數(shù)是另一個數(shù)的百分之幾。

百分?jǐn)?shù)是指的兩個數(shù)的比,因此也叫百分率或百分比。

2、百分?jǐn)?shù)和分?jǐn)?shù)的主要聯(lián)系與區(qū)別:

(1)聯(lián)系:都可以表示兩個量的倍比關(guān)系。

(2)區(qū)別:

①意義不同:百分?jǐn)?shù)只表示兩個數(shù)的倍比關(guān)系,不能表示具體的數(shù)量,所以不能帶單位;

分?jǐn)?shù)既可以表示具體的數(shù),又可以表示兩個數(shù)的關(guān)系,表示具本數(shù)時可以帶單位。

②、百分?jǐn)?shù)的分子可以是整數(shù),也可以是小數(shù);

分?jǐn)?shù)的分子不能是小數(shù),只能是除0以外的自然數(shù)。

3、百分?jǐn)?shù)的寫法:通常不寫成分?jǐn)?shù)形式,而在原來分子后面加上“%”來表示。

(二)百分?jǐn)?shù)與小數(shù)的互化:

1、小數(shù)化成百分?jǐn)?shù):把小數(shù)點向右移動兩位,同時在后面添上百分號。

2. 百分?jǐn)?shù)化成小數(shù):把小數(shù)點向左移動兩位,同時去掉百分號。

(三)百分?jǐn)?shù)的和分?jǐn)?shù)的互化

1、百分?jǐn)?shù)化成分?jǐn)?shù):

先把百分?jǐn)?shù)化成分?jǐn)?shù),先把百分?jǐn)?shù)改寫成分母是否100的分?jǐn)?shù),能約分要約成最簡分?jǐn)?shù)。

2、分?jǐn)?shù)化成百分?jǐn)?shù):

① 用分?jǐn)?shù)的基本性質(zhì),把分?jǐn)?shù)分母擴大或縮小成分母是100的分?jǐn)?shù),再寫成百分?jǐn)?shù)形式。

②先把分?jǐn)?shù)化成小數(shù)(除不盡時,通常保留三位小數(shù)),再把小數(shù)化成百分?jǐn)?shù)。

(四)常見的分?jǐn)?shù)與小數(shù)、百分?jǐn)?shù)之間的互化

第二部分 圖形與幾何

一、認(rèn)識圓

1、圓的定義:圓是由曲線圍成的一種平面圖形。

2、圓心:將一張圓形紙片對折兩次,折痕相交于圓中心的一點,這一點叫做圓心。

一般用字母O表示。它到圓上任意一點的距離都相等。

3、半徑:連接圓心到圓上任意一點的線段叫做半徑。一般用字母r表示。

把圓規(guī)兩腳分開,兩腳之間的距離就是圓的半徑。

4、直徑:通過圓心并且兩端都在圓上的線段叫做直徑。一般用字母d表示。

直徑是一個圓內(nèi)最長的線段。

5、圓心確定圓的位置,半徑確定圓的大小。

6、在同圓或等圓內(nèi),有無數(shù)條半徑,有無數(shù)條直徑。所有的半徑都相等,所有的直徑都相等。

7.在同圓或等圓內(nèi),直徑的長度是半徑的2倍,半徑的長度是直徑的 。

用字母表示為:d=2r或r=d/2

8、軸對稱圖形:

如果一個圖形沿著一條直線對折,兩側(cè)的圖形能夠完全重合,這個圖形是軸對稱圖形。

折痕所在的這條直線叫做對稱軸。(經(jīng)過圓心的任意一條直線或直徑所在的直線)

9、長方形、正方形和圓都是對稱圖形,都有對稱軸。這些圖形都是軸對稱圖形。

10、只有1一條對稱軸的圖形有: 角、等腰三角形、等腰梯形、扇形、半圓。

只有2條對稱軸的圖形是:長方形

只有3條對稱軸的圖形是:等邊三角形

只有4條對稱軸的圖形是:正方形

有無數(shù)條對稱軸的圖形是:圓、圓環(huán)。

二、圓的周長

1、圓的周長:圍成圓的曲線的長度叫做圓的周長。用字母C表示。

2、圓周率實驗:

在圓形紙片上做個記號,與直尺0刻度對齊,在直尺上滾動一周,求出圓的周長。發(fā)現(xiàn)一般規(guī)律,就是圓周長與它直徑的比值是一個固定數(shù)(π)。

3.圓周率:任意一個圓的周長與它的直徑的比值是一個固定的數(shù),我們把它叫做圓周率。用字母π(pai) 表示。

(1)一個圓的周長總是它直徑的3倍多一些,這個比值是一個固定的數(shù)。圓周率π是一個無限不循環(huán)小數(shù)。在計算時,一般取π ≈ 3.14。

(2)在判斷時,圓周長與它直徑的比值是π倍,而不是3.14倍。

(3)世界上第一個把圓周率算出來的人是我國的數(shù)學(xué)家祖沖之。

4、圓的周長公式

5、在一個正方形里畫一個的圓,圓的直徑等于正方形的邊長。

在一個長方形里畫一個的圓,圓的直徑等于長方形的寬。

6、區(qū)分周長的一半和半圓的周長:

(1)周長的一半:等于圓的周長÷2

計算方法:2πr÷2 即 πr

(2)半圓的周長:等于圓的周長的一半加直徑。

計算方法:πr+2r

三、圓的面積

1、圓的面積:圓所占平面的大小叫做圓的面積。 用字母S表示。

2、一條弧和經(jīng)過這條弧兩端的兩條半徑所圍成的圖形叫做扇形。頂點在圓心的角叫做圓心角。

3、圓面積公式的推導(dǎo):

(1)、用逐漸逼近的轉(zhuǎn)化思想: 體現(xiàn)化圓為方,化曲為直;化新為舊,化未知為已知,化復(fù)雜為簡單,化抽象為具體。

(2)、把一個圓等分(偶數(shù)份)成的扇形份數(shù)越多,拼成的圖像越接近長方形。

(3)、拼出的圖形與圓的周長和半徑的關(guān)系。

4、環(huán)形的面積:

一個環(huán)形,外圓的半徑是R,內(nèi)圓的半徑是r。(R=r+環(huán)的寬度.)

S環(huán) = πR?-πr?或

環(huán)形的面積公式: S環(huán)=π(R?-r?)。

5、一個圓,半徑擴大或縮小多少倍,直徑和周長也擴大或縮小相同的倍數(shù)。

而面積擴大或縮小的倍數(shù)是這倍數(shù)的平方倍。

例如:

在同一個圓里,半徑擴大3倍,那么直徑和周長就都擴大3倍,而面積擴大9倍。

6、兩個圓:半徑比 = 直徑比 = 周長比;而面積比等于這比的平方。

例如:

兩個圓的半徑比是2∶3,那么這兩個圓的直徑比和周長比都是2∶3,而面積比是4∶9

7、任意一個正方形與它內(nèi)切圓的面積之比都是一個固定值,即:4∶π

8、當(dāng)長方形,正方形,圓的周長相等時,圓面積,正方形居中,長方形面積最小。反之,面積相同時,長方形的周長最長,正方形居中,圓周長最短。

9、確定起跑線:

(1)、每條跑道的長度 = 兩個半圓形跑道合成的圓的周長 + 兩個直道的長度。

(2)、每條跑道直道的長度都相等,而各圓周長決定每條跑道的總長度。(因此起跑線不同)

(3)、每相鄰兩個跑道相隔的距離是: 2×π×跑道的寬度

(4)、當(dāng)一個圓的半徑增加a厘米時,它的周長就增加2πa厘米;當(dāng)一個圓的直徑增加a厘米時,它的周長就增加πa厘米。

11、常用各π值結(jié)果:

2π = 6.28 3π = 9.42

4π = 12.56 5π = 15.7

6π = 18.84 7π = 21.98

8π = 25.12 9π = 28.26

10π = 31.4 16π = 50.24

25π = 78.5 36π = 113.04

64π = 200.96 96π = 301.44

扇形統(tǒng)計圖

一、扇形統(tǒng)計圖的意義:

用整個圓的面積表示總數(shù),用圓內(nèi)各個扇形面積表示各部分?jǐn)?shù)量同總數(shù)之間的關(guān)系。

也就是各部分?jǐn)?shù)量占總數(shù)的百分比(因此也叫百分比圖)。

二、常用統(tǒng)計圖的優(yōu)點:

1、條形統(tǒng)計圖:可以清楚的看出各種數(shù)量的多少。

2、折線統(tǒng)計圖:不僅可以看出各種數(shù)量的多少,還可以清晰看出數(shù)量的增減變化情況。

3、扇形統(tǒng)計圖:能夠清楚的反映出各部分?jǐn)?shù)量同總數(shù)之間的關(guān)系。

三、扇形的面積大?。涸谕粋€圓中,扇形的大小與這個扇形的圓心角的大小有關(guān),圓心角越大,扇形越大。(因此扇形面積占圓面積的百分比,同時也是該扇形圓心角度數(shù)占圓周角度數(shù)的百分比。)

小學(xué)六年級數(shù)學(xué)上冊知識點

第一單元 位置

1、什么是數(shù)對?

――數(shù)對:由兩個數(shù)組成,中間用逗號隔開,用括號括起來。括號里面的數(shù)由左至右為列數(shù)和行數(shù),即“先列后行”。

作用:確定一個點的位置。經(jīng)度和緯度就是這個原理。

例:在方格圖(平面直角坐標(biāo)系)中用數(shù)對(3,5)表示(第三列,第五行)。

注:(1)在平面直角坐標(biāo)系中X軸上的坐標(biāo)表示列,y軸上的坐標(biāo)表示行。如:數(shù)對(3,2)表示第三列,第二行。

(2)數(shù)對(X,5)的行號不變,表示一條橫線,(5,Y)的列號不變,表示一條豎線。(有一個數(shù)不確定,不能確定一個點)

( 列 , 行 )

↓ ↓

豎排叫列 橫排叫行

(從左往右看)(從下往上看)

(從前往后看)

2、圖形左右平移行數(shù)不變;圖形上下平移列數(shù)不變。

3、兩點間的距離與基準(zhǔn)點(0,0)的選擇無關(guān),基準(zhǔn)點不同導(dǎo)致數(shù)對不同,兩點間但距離不變。

第二單元 分?jǐn)?shù)乘法

(一)分?jǐn)?shù)乘法意義:

1、分?jǐn)?shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)的和的簡便運算。

注:“分?jǐn)?shù)乘整數(shù)”指的是第二個因數(shù)必須是整數(shù),不能是分?jǐn)?shù)。

例如: ×7表示: 求7個 的和是多少? 或表示: 的7倍是多少?

2、一個數(shù)乘分?jǐn)?shù)的意義就是求一個數(shù)的幾分之幾是多少。

注:“一個數(shù)乘分?jǐn)?shù)”指的是第二個因數(shù)必須是分?jǐn)?shù),不能是整數(shù)。(第一個因數(shù)是什么都可以)

例如: × 表示: 求 的 是多少?

9 × 表示: 求9的 是多少?

A × 表示: 求a的 是多少?

(二)分?jǐn)?shù)乘法計算法則:

1、分?jǐn)?shù)乘整數(shù)的運算法則是:分子與整數(shù)相乘,分母不變。

注:(1)為了計算簡便能約分的可先約分再計算。(整數(shù)和分母約分)

(2)約分是用整數(shù)和下面的分母約掉公因數(shù)。(整數(shù)千萬不能與分母相乘,計算結(jié)果必須是最簡分?jǐn)?shù))

2、分?jǐn)?shù)乘分?jǐn)?shù)的運算法則是:用分子相乘的積做分子,分母相乘的積做分母。(分子乘分子,分母乘分母)

注:(1)如果分?jǐn)?shù)乘法算式中含有帶分?jǐn)?shù),要先把帶分?jǐn)?shù)化成假分?jǐn)?shù)再計算。

(2)分?jǐn)?shù)化簡的方法是:分子、分母同時除以它們的公因數(shù)。

(3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數(shù)先劃去,再分別在它們的上、下方寫出約分后的數(shù)。(約分后分子和分母必須不再含有公因數(shù),這樣計算后的結(jié)果才是最簡單分?jǐn)?shù))

(4)分?jǐn)?shù)的基本性質(zhì):分子、分母同時乘或者除以一個相同的數(shù)(0除外),分?jǐn)?shù)的大小不變。

(三)積與因數(shù)的關(guān)系:

一個數(shù)(0除外)乘大于1的數(shù),積大于這個數(shù)。a×b=c,當(dāng)b >1時,c>a.

一個數(shù)(0除外)乘小于1的數(shù),積小于這個數(shù)。a×b=c,當(dāng)b <1時,c

一個數(shù)(0除外)乘等于1的數(shù),積等于這個數(shù)。a×b=c,當(dāng)b =1時,c=a .

注:在進(jìn)行因數(shù)與積的大小比較時,要注意因數(shù)為0時的特殊情況。

附:形如 的分?jǐn)?shù)可折成( )×

(四)分?jǐn)?shù)乘法混合運算

1、分?jǐn)?shù)乘法混合運算順序與整數(shù)相同,先乘、除后加、減,有括號的先算括號里面的,再算括號外面的。

2、整數(shù)乘法運算定律對分?jǐn)?shù)乘法同樣適用;運算定律可以使一些計算簡便。

乘法交換律:a×b=b×a

乘法結(jié)合律:(a×b)×c=a×(b×c)

乘法分配律:a×(b±c)=a×b±a×c

(五)倒數(shù)的意義:乘積為1的兩個數(shù)互為倒數(shù)。

1、倒數(shù)是兩個數(shù)的關(guān)系,它們互相依存,不能單獨存在。單獨一個數(shù)不能稱為倒數(shù)。(必須說清誰是誰的倒數(shù))

2、判斷兩個數(shù)是否互為倒數(shù)的標(biāo)準(zhǔn)是:兩數(shù)相乘的積是否為“1”。

例如:a×b=1則a、b互為倒數(shù)。

3、求倒數(shù)的方法:

①求分?jǐn)?shù)的倒數(shù):交換分子、分母的位置。

②求整數(shù)的倒數(shù):整數(shù)分之1。

③求帶分?jǐn)?shù)的倒數(shù):先化成假分?jǐn)?shù),再求倒數(shù)。

④求小數(shù)的倒數(shù):先化成分?jǐn)?shù)再求倒數(shù)。

4、1的倒數(shù)是它本身,因為1×1=1

0沒有倒數(shù),因為任何數(shù)乘0積都是0,且0不能作分母。

5、任意數(shù)a(a≠0),它的倒數(shù)為 ;非零整數(shù)a的倒數(shù)為 ;分?jǐn)?shù) 的倒數(shù)是 。

6、真分?jǐn)?shù)的倒數(shù)是假分?jǐn)?shù),真分?jǐn)?shù)的倒數(shù)大于1,也大于它本身。

假分?jǐn)?shù)的倒數(shù)小于或等于1。

帶分?jǐn)?shù)的倒數(shù)小于1。

(六)分?jǐn)?shù)乘法應(yīng)用題 ――用分?jǐn)?shù)乘法解決問題

1、求一個數(shù)的幾分之幾是多少?(用乘法)

“1”× =

例如:求25的 是多少? 列式:25× =15

甲數(shù)的 等于乙數(shù),已知甲數(shù)是25,求乙數(shù)是多少? 列式:25× =15

注:已知單位“1”的量,求單位“1”的量的幾分之幾是多少,用單位“1”的量與分?jǐn)?shù)相乘。

2、( 什么)是(什么 )的 。

( )= ( “1” ) ×

例1: 已知甲數(shù)是乙數(shù)的 ,乙數(shù)是25,求甲數(shù)是多少?

甲數(shù)=乙數(shù)× 即25× =15

注:(1)“是”“的”字中間的量“乙數(shù)”是 的單位“1”的量,即 是把乙數(shù)看作單位“1”,把乙數(shù)平均分成5份,甲數(shù)是其中的3份。

(2)“是”“占”“比”這三個字都相當(dāng)于“=”號,“的”字相當(dāng)于“×”。

(3)單位“1”的量×分率=分率對應(yīng)的量

例2:甲數(shù)比乙數(shù)多(少) ,乙數(shù)是25,求甲數(shù)是多少?

甲數(shù)=乙數(shù) ± 乙數(shù)× 即25±25× =25×(1± )=40(或10)

3、巧找單位“1”的量:在含有分?jǐn)?shù)(分率)的語句中,分率前面的量就是單位“1”對應(yīng)的量,或者“占”“是”“比”字后面的量是單位“1”。

4、什么是速度?

――速度是單位時間內(nèi)行駛的路程。速度=路程÷時間 時間=路程÷速度 路程=速度×?xí)r間

――單位時間指的是1小時1分鐘1秒等這樣的大小為1的時間單位,每分鐘、每小時、每秒鐘等。

5、求甲比乙多(少)幾分之幾?

多:(甲-乙)÷乙

少:(乙-甲)÷乙

第三單元 分?jǐn)?shù)除法

一、分?jǐn)?shù)除法的意義:分?jǐn)?shù)除法是分?jǐn)?shù)乘法的逆運算,已知兩個數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算。

二、分?jǐn)?shù)除法計算法則:除以一個數(shù)(0除外),等于乘上這個數(shù)的倒數(shù)。

1、被除數(shù)÷除數(shù)=被除數(shù)×除數(shù)的倒數(shù)。例 ÷3= × = 3÷ =3× =5

2、除法轉(zhuǎn)化成乘法時,被除數(shù)一定不能變,“÷”變成“×”,除數(shù)變成它的倒數(shù)。

3、分?jǐn)?shù)除法算式中出現(xiàn)小數(shù)、帶分?jǐn)?shù)時要先化成分?jǐn)?shù)、假分?jǐn)?shù)再計算。

4、被除數(shù)與商的變化規(guī)律:

①除以大于1的數(shù),商小于被除數(shù):a÷b=c 當(dāng)b>1時,c

②除以小于1的數(shù),商大于被除數(shù):a÷b=c 當(dāng)b<1時,c>a (a≠0 b≠0)

③除以等于1的數(shù),商等于被除數(shù):a÷b=c 當(dāng)b=1時,c=a

三、分?jǐn)?shù)除法混合運算

1、混合運算用梯等式計算,等號寫在第一個數(shù)字的左下角。

2、運算順序:

①連除:屬同級運算,按照從左往右的順序進(jìn)行計算;或者先把所有除法轉(zhuǎn)化成乘法再計算;或者依據(jù)“除以幾個數(shù),等于乘上這幾個數(shù)的積”的簡便方法計算。加、減法為一級運算,乘、除法為二級運算。

②混合運算:沒有括號的先乘、除后加、減,有括號的先算括號里面,再算括號外面。

注:(a±b)÷c=a÷c±b÷c

四、比:兩個數(shù)相除也叫兩個數(shù)的比

1、比式中,比號(∶)前面的數(shù)叫前項,比號后面的項叫做后項,比號相當(dāng)于除號,比的前項除以后項的商叫做比值。

注:連比如:3:4:5讀作:3比4比5

2、比表示的是兩個數(shù)的關(guān)系,可以用分?jǐn)?shù)表示,寫成分?jǐn)?shù)的形式,讀作幾比幾。

例:12∶20= =12÷20= =0.6 12∶20讀作:12比20

注:區(qū)分比和比值:比值是一個數(shù),通常用分?jǐn)?shù)表示,也可以是整數(shù)、小數(shù)。

比是一個式子,表示兩個數(shù)的關(guān)系,可以寫成比,也可以寫成分?jǐn)?shù)的形式。

3、比的基本性質(zhì):比的前項和后項同時乘以或除以相同的數(shù)(0除外),比值不變。

3、化簡比:化簡之后結(jié)果還是一個比,不是一個數(shù)。

(1)、 用比的前項和后項同時除以它們的公約數(shù)。

(2)、 兩個分?jǐn)?shù)的比,用前項后項同時乘分母的最小公倍數(shù),再按化簡整數(shù)比的方法來化簡。也可以求出比值再寫成比的形式。

(3)、 兩個小數(shù)的比,向右移動小數(shù)點的位置,也是先化成整數(shù)比。

4、求比值:把比號寫成除號再計算,結(jié)果是一個數(shù)(或分?jǐn)?shù)),相當(dāng)于商,不是比。

5、比和除法、分?jǐn)?shù)的區(qū)別:

除法 被除數(shù) 除號(÷) 除數(shù)(不能為0) 商不變性質(zhì) 除法是一種運算

分?jǐn)?shù) 分子 分?jǐn)?shù)線(――) 分母(不能為0) 分?jǐn)?shù)的基本性質(zhì) 分?jǐn)?shù)是一個數(shù)

比 前項 比號(∶) 后項(不能為0) 比的基本性質(zhì) 比表示兩個數(shù)的關(guān)系

附:商不變性質(zhì):被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(0除外),商不變。

分?jǐn)?shù)的基本性質(zhì):分子和分母同時乘或除以相同的數(shù)(0除外),分?jǐn)?shù)的大小不變。

五、分?jǐn)?shù)除法和比的應(yīng)用

1、已知單位“1”的量用乘法。例:甲是乙的 ,乙是25,求甲是多少?即:甲=乙× (15× =9)

2、未知單位“1”的量用除法。例: 甲是乙的 ,甲是15,求乙是多少?即:甲=乙× (15÷ =25)(建議列方程答)

3、分?jǐn)?shù)應(yīng)用題基本數(shù)量關(guān)系(把分?jǐn)?shù)看成比)

(1)甲是乙的幾分之幾?

甲=乙×幾分之幾 (例:甲是15的 ,求甲是多少?15× =9)

乙=甲÷幾分之幾 (例:9是乙的 ,求乙是多少?9÷ =15)

幾分之幾=甲÷乙 (例:9是15的幾分之幾?9÷15= )(“是”字相當(dāng)“÷”號,乙是單位“1”)

(2)甲比乙多(少)幾分之幾?

A 差÷乙= (“比”字后面的量是單位“1”的量)(例:9比15少幾分之幾?(15-9)÷15= = = )

B 多幾分之幾是: ?1 (例: 15比9少幾分之幾?15÷9= -1= ?1= )

C 少幾分之幾是:1? (例:9比15少幾分之幾?1-9÷15=1? =1? = )

D 甲=乙±差=乙±乙× =乙±乙× =乙(1± ) (例:甲比15少 ,求甲是多少?15?15× =15×(1? )=9(多是“+”少是“?”)

E 乙=甲÷(1± )(例:9比乙少 ,求乙是多少?9÷(1- )=9 ÷ =15)(多是“+”少是“?”)

(例:15比乙多 ,求乙是多少?15÷(1+ )=15 ÷ =9)(多是“+”少是“?”)

4、按比例分配:把一個量按一定的比分配的方法叫做按比例分配。

例如:已知甲乙的和是56,甲、乙的比3∶5,求甲、乙分別是多少?

方法一:56÷(3+5)=7 甲:3×7=21 乙:5×7=35

方法二:甲:56× =21 乙:56× =35

例如:已知甲是21,甲、乙的比3∶5,求乙是多少?

方法一:21÷3=7 乙:5×7=35

方法二:甲乙的和21÷ =56 乙:56× =35

方法二:甲÷乙= 乙=甲÷ =21÷ =35

5、畫線段圖:

(1)找出單位“1”的量,先畫出單位“1”,標(biāo)出已知和未知。

(2)分析數(shù)量關(guān)系。

(3)找等量關(guān)系。

(4)列方程。

注:兩個量的關(guān)系畫兩條線段圖,部分和整體的關(guān)系畫一條線段圖。

第四單元 圓

一、.圓的特征

1、圓是平面內(nèi)封閉曲線圍成的平面圖形,.

2、圓的特征:外形美觀,易滾動。

3、圓心o:圓中心的點叫做圓心.圓心一般用字母O表示.圓多次對折之后,折痕的相交于圓的中心即圓心。圓心確定圓的位置。

半徑r:連接圓心到圓上任意一點的線段叫做半徑。在同一個圓里,有無數(shù)條半徑,且所有的半徑都相等。半徑確定圓的大小。

直徑d: 通過圓心且兩端都在圓上的線段叫做直徑。在同一個圓里,有無數(shù)條直徑,且所有的直徑都相等。直徑是圓內(nèi)最長的線段。

同圓或等圓內(nèi)直徑是半徑的2倍:d=2r 或 r=d÷2= d=

4、等圓:半徑相等的圓叫做同心圓,等圓通過平移可以完全重合。

同心圓:圓心重合、半徑不等的兩個圓叫做同心圓。

5、圓是軸對稱圖形:如果一個圖形沿著一條直線對折,兩側(cè)的圖形能夠完全重合,這個圖形是軸對稱圖形。折痕所在的直線叫做對稱軸。

有一條對稱軸的圖形:半圓、扇形、等腰梯形、等腰三角形、角

有二條對稱軸的圖形:長方形

有三條對稱軸的圖形:等邊三角形

有四條對稱軸的圖形:正方形

有無條對稱軸的圖形:圓,圓環(huán)

6、畫圓

(1)圓規(guī)兩腳間的距離是圓的半徑。

(2)畫圓步驟:定半徑、定圓心、旋轉(zhuǎn)一周。

二、圓的周長:圍成圓的曲線的長度叫做圓的周長,周長用字母C表示。

1、圓的周長總是直徑的三倍多一些。

2、圓周率:圓的周長與直徑的比值是一個固定值,叫做圓周率,用字母π表示。

即:圓周率π= =周長÷直徑≈3.14

所以,圓的周長(c)=直徑(d)×圓周率(π) ――周長公式: c=πd, c=2πr

注:圓周率π是一個無限不循環(huán)小數(shù),3.14是近似值。

3、周長的變化的規(guī)律:半徑擴大多少倍直徑也擴大多少倍,周長擴大的倍數(shù)與半徑、直徑擴大的倍數(shù)相同。

如果r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3

4、半圓周長=圓周長一半+直徑= ×2πr=πr+d

三、圓的面積s

1、圓面積公式的推導(dǎo)

如圖把一個圓沿直徑等分成若干份,剪開拼成長方形,份數(shù)越多拼成的圖像越接近長方形。

圓的半徑 = 長方形的寬

圓的周長的一半 = 長方形的長

長方形面積 = 長 ×寬

所以:圓的面積 = 長方形的面積 = 長 ×寬 = 圓的周長的一半(πr)×圓的半徑(r)

S圓 = πr × r

S圓 = πr×r = πr2

2、幾種圖形,在面積相等的情況下,圓的周長最短,而長方形的周長最長;反之,在周長相等的情況下,圓的面積則,而長方形的面積則最小。

周長相同時,圓面積,利用這一特點,籃子、盤子做成圓形。

3、圓面積的變化的規(guī)律:半徑擴大多少倍直徑、周長也同時擴大多少倍,圓面積擴大的倍數(shù)是半徑、直徑擴大的倍數(shù)的平方倍。

如果: r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3=2∶3∶4

則:S1∶S2∶S3=4∶9∶16

4、環(huán)形面積 = 大圓 ? 小圓=πr大2 - πr小2=π(r大2 - r小2)

扇形面積 = πr2× (n表示扇形圓心角的度數(shù))

5、跑道:每條跑道的周長等于兩半圓跑道合成的圓的周長加上兩條直跑道的和。因為兩條直跑道長度相等,所以,起跑線不同,相鄰兩條跑道起跑線也不同,間隔的距離是:2×π×跑道寬度。

注:一個圓的半徑增加a厘米,周長就增加2πa厘米

一個圓的直徑增加b厘米,周長就增加πb 厘米

6、任意一個正方形的內(nèi)切圓即圓的直徑是正方形的邊長,它們的面積比是4∶π

7、常用數(shù)據(jù)

π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7

第五單元、百分?jǐn)?shù)

一、百分?jǐn)?shù)的意義:表示一個數(shù)是另一個數(shù)的百分之幾。

注:百分?jǐn)?shù)是專門用來表示一種特殊的倍比關(guān)系的,表示兩個數(shù)的比,所以,百分?jǐn)?shù)又叫百分比或百分率,百分?jǐn)?shù)不能帶單位。

1、百分?jǐn)?shù)和分?jǐn)?shù)的區(qū)別和聯(lián)系:

(1)聯(lián)系:都可以用來表示兩個量的倍比關(guān)系。

(2)區(qū)別:意義不同:百分?jǐn)?shù)只表示倍比關(guān)系,不表示具體數(shù)量,所以不能帶單位。分?jǐn)?shù)不僅表示倍比關(guān)系,還能帶單位表示具體數(shù)量。

百分?jǐn)?shù)的分子可以是小數(shù),分?jǐn)?shù)的分子只以是整數(shù)。

注:百分?jǐn)?shù)在生活中應(yīng)用廣泛,所涉及問題基本和分?jǐn)?shù)問題相同,分母是100的分?jǐn)?shù)并不是百分?jǐn)?shù),必須把分母寫成“%”才是百分?jǐn)?shù),所以“分母是100的分?jǐn)?shù)就是百分?jǐn)?shù)”這句話是錯誤的。“%”的兩個0要小寫,不要與百分?jǐn)?shù)前面的數(shù)混淆。一般來講,出勤率、成活率、合格率、正確率能達(dá)到100%,出米率、出油率達(dá)不到100%,完成率、增長了百分之幾等可以超過100%。一般出粉率在70、80%,出油率在30、40%。

2、小數(shù)、分?jǐn)?shù)、百分?jǐn)?shù)之間的互化

(1)百分?jǐn)?shù)化小數(shù):小數(shù)點向左移動兩位,去掉“%”。

(2)小數(shù)化百分?jǐn)?shù):小數(shù)點向右移動兩位,添上“%”。

(3)百分?jǐn)?shù)化分?jǐn)?shù):先把百分?jǐn)?shù)寫成分母是100的分?jǐn)?shù),然后再化簡成最簡分?jǐn)?shù)。

(4)分?jǐn)?shù)化百分?jǐn)?shù):分子除以分母得到小數(shù),(除不盡的保留三位小數(shù))然后化成百分?jǐn)?shù)。

(5)小數(shù) 化 分?jǐn)?shù):把小數(shù)成分母是10、100、1000等的分?jǐn)?shù)再化簡。

(6)分?jǐn)?shù) 化 小數(shù):分子除以分母。

二、百分?jǐn)?shù)應(yīng)用題

1、 求常見的百分率 如:達(dá)標(biāo)率、及格率、成活率、發(fā)芽率、出勤率等求百分率就是求一個數(shù)是另一個數(shù)的百分之幾

2、 求一個數(shù)比另一個數(shù)多(或少)百分之幾,實際生活中,人們常用增加了百分之幾、減少了百分之幾、節(jié)約了百分之幾等來表示增加、或減少的幅度。

求甲比乙多百分之幾 (甲-乙)÷乙

求乙比甲少百分之幾 (甲-乙)÷甲

3、 求一個數(shù)的百分之幾是多少 一個數(shù)(單位“1”) ×百分率

4、 已知一個數(shù)的百分之幾是多少,求這個數(shù) 部分量÷百分率=一個數(shù)(單位“1”)

5、 折扣 折扣、打折的意義:幾折就是十分之幾也就是百分之幾十

折扣 成數(shù) 幾分之幾 百分之幾 小數(shù) 通用

八折 八成 十分之八 百分之八十 0.8

八五折 八成五 十分之八點五 百分之八十五 0.85

五折 五成 十分之五 百分之五十 0.5 半價

6、 納稅 繳納的稅款叫做應(yīng)納稅額。

(應(yīng)納稅額)÷(總收入)=(稅率)

(應(yīng)納稅額)=(總收入)×(稅率)

7、 利率

(1)存入銀行的錢叫做本金。

(2)取款時銀行多支付的錢叫做利息。

(3)利息與本金的比值叫做利率。

利息=本金×利率×?xí)r間

稅后利息=利息-利息的應(yīng)納稅額=利息-利息×5%

注:國債和教育儲蓄的利息不納稅

8、百分?jǐn)?shù)應(yīng)用題型分類

(1)求甲是乙的百分之幾――(甲÷乙)×100% = ×100% = 百分之幾

(2)求甲比乙多(少)百分之幾―― ×100% = ×100%

① 甲是50,乙是40,甲是乙的百分之幾?(50是40的百分之幾?)50÷40=125%

② 甲是50,乙是40,乙是甲的百分之幾?(40是50的百分之幾?)40÷50=80%

③ 乙是40,甲是乙的125%,甲數(shù)是多少?(40的125%是多少?)40×125%=50

④ 甲是50,乙是甲的80%,乙數(shù)是多少?(50的80%是多少?)50×80%=40

⑤ 乙是40,乙是甲的80%,甲數(shù)是多少?(一個數(shù)的80%是40,這個數(shù)是多少?)40÷80%=50

⑥ 甲是50,甲是乙的125%,乙數(shù)是多少?(一個數(shù)的125%是50,這個數(shù)是多少?)50÷125%=40

⑦ 甲是50,乙是40,甲比乙多百分之幾?(50比40多百分之幾?)(50-40)÷40×100%=25%

⑧ 甲是50,乙是40,乙比甲少百分之幾?(40比50少百分之幾?)(50-40)÷50×100%=20%

⑨ 甲比乙多25%,多10,乙是多少?10÷25%=40

⑩ 甲比乙多25%,多10,甲是多少?10÷25%+10=50

? 乙比甲少20%,少10,甲是多少?10÷20%=50

? 乙比甲少20%,少10,乙是多少?10÷20%-10=40

? 乙是40,甲比乙多25%,甲數(shù)是多少?(什么數(shù)比40多25%?)40×(1+25%)=50

? 甲是50,乙比甲少20%,乙數(shù)是多少?(什么數(shù)比50多25%?)50×(1-20%)=40

? 乙是40,比甲少20%,甲數(shù)是多少?(40比什么數(shù)少20%?)40÷(1-20%)=50

? 甲是50,比乙多25%,乙數(shù)是多少?(50比什么數(shù)多25%?)40÷(1+25%)=40

第六單元、統(tǒng)計

1、 扇形統(tǒng)計圖的意義:用整個圓的面積表示總數(shù),用圓內(nèi)各個扇形面積表示各部分?jǐn)?shù)量同總數(shù)之間關(guān)系,也就是各部分?jǐn)?shù)量占總數(shù)的百分比,因此也叫百分比圖。

2、 常用統(tǒng)計圖的優(yōu)點:

(1)、條形統(tǒng)計圖直觀顯示每個數(shù)量的多少。

(2)、折線統(tǒng)計圖不僅直觀顯示數(shù)量的增減變化,還可清晰看出各個數(shù)量的多少。

(3)、扇形統(tǒng)計圖直觀顯示部分和總量的關(guān)系。

第七單元、數(shù)學(xué)廣角

一、研究中國古代的雞兔同籠問題。

1、 用表格方式解決有局限性,數(shù)目必須小,例:

頭數(shù) 雞(只)兔(只) 腿數(shù)

35 1 34

35 2 33

35 3 32

……

(逐一列表法、腿數(shù)少,小幅度跳躍;腿數(shù)多,大幅度跳躍。跳躍逐一相結(jié)合、取中列表)

2、 用假設(shè)法解決

(1) 假如都是兔

(2) 假如都是雞

(3) 假如它們各抬起一條腿

(4) 假如兔子抬起兩條前腿

3、 用代數(shù)方法解(一般規(guī)律)

注釋:這個問題,是我國古代趣題之一。大約在1500年前,《孫子算經(jīng)》中就記載了這個有趣的問題。書中是這樣敘述的:“今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?這四句話的意思是:有若干只雞兔同在一個籠子里,從上面數(shù),有35個頭;從下面數(shù),有94只腳。求籠中各有幾只雞和兔?

二、和尚分饅頭

100個和尚吃100個饅頭,大和尚一人吃3個,小和尚三人吃一個。大小和尚各多少人?

國明代珠算家程大位的名著《直指算法統(tǒng)宗》里有一道算題:

一百饅頭一百僧,

大僧三個更無爭,

小僧三人分一個,

大小和尚各幾丁?"

如果譯成白話文,其意思是:有100個和尚分100只饅頭,正好分完。如果大和尚一人分3只,小和尚3人分一只,試問大、小和尚各有幾人?

方法一,用方程解:

解:設(shè)大和尚有x人,則小和尚有(100-x)人,根據(jù)題意列得方程:

3x + (100-x)=100

x=25

100-25=75人

方法二,雞兔同籠法:

(1)假設(shè)100人全是大和尚,應(yīng)吃饅頭多少個?

3×100=300(個).

(2)這樣多吃了幾個呢?

300-100=200(個).

(3)為什么多吃了200個呢?這是因為把小和尚當(dāng)成大和尚。那么把小和尚當(dāng)成大和尚時,每個小和尚多算了幾個饅頭?

3- = (個)

(4)每個小和尚多算了8/3個饅頭,一共多算了200個,所以小和尚有:

小和尚:200÷ =75(人)

大和尚:100-75=25(人)

方法三,分組法:

由于大和尚一人分3只饅頭,小和尚3人分一只饅頭。我們可以把3個小和尚與1個大和尚編為一組,這樣每組4個和尚剛好分4個饅頭,那么100個和尚總共分為100÷(3+1)=25組,因為每組有1個大和尚,所以有25個大和尚;又因為每組有3個小和尚,所以有25×3=75個小和尚。

這是《直指算法統(tǒng)宗》里的解法,原話是:"置僧一百為實,以三一并得四為法除之,得大僧二十五個。"所謂"實"便是"被除數(shù)","法"便是"除數(shù)"。列式就是:

100÷(3+1)=25(組)

大和尚:25×1=25(人)

小和尚:100-25=75(人)或25×3=75(人)

我國古代勞動人民的智慧由此可見一斑。

三、整數(shù)、分?jǐn)?shù)、百分?jǐn)?shù)應(yīng)用題結(jié)構(gòu)類型

(一)求甲是乙的幾倍(或幾分之幾或百分之幾)的應(yīng)用題。

解法:甲數(shù)除以乙數(shù)

例:校園里有楊樹40棵,柳樹有50棵,楊樹的棵樹占柳樹的百分之幾?(或幾分之幾?)

(二)求甲數(shù)的幾倍(或幾分之幾或百分之幾)是多少的應(yīng)用題。

解答分?jǐn)?shù)應(yīng)用題,首先要確定單位“1”,在單位“1”確定以后,一個具體數(shù)量總與一個具體分?jǐn)?shù)(分率)相對應(yīng),這種關(guān)系叫“量率對應(yīng)”,這是解答分?jǐn)?shù)應(yīng)用題的關(guān)鍵。

求一個數(shù)的幾倍(幾分之幾或百分之幾)是多少用乘法,單位“1”×分率=對應(yīng)數(shù)量

例:六年級有學(xué)生180人,五年級的學(xué)生人數(shù)是六年級人數(shù)的56 。五年級有學(xué)生多少人?

180×56 =150

(三)已知甲數(shù)的幾倍(或幾分之幾或百分之幾)是多少,求甲數(shù)(即求標(biāo)準(zhǔn)量或單位“1”)的應(yīng)用題。

解法:對應(yīng)數(shù)量÷對應(yīng)分率=單位“1”

例:育紅小學(xué)六年級男生有120人,占參加興趣活動小組人數(shù)的35 . 六年級參加興趣活動小組人數(shù)共有學(xué)生多少人?

120÷35 =200(人)

如何快速學(xué)好數(shù)學(xué)

一、課內(nèi)重視聽講,課后及時復(fù)習(xí)。

新知識的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進(jìn)行,所以要特點重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。上課時要緊跟老師的思路,積極展開思維預(yù)測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識和基本技能的學(xué)習(xí),課后要及時復(fù)習(xí)不留疑點。

首先要在做各種習(xí)題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不采用不清楚立即翻書之舉。

認(rèn)真獨立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問的學(xué)習(xí)作風(fēng),對于有些題目由于自己的思路不清,一時難以解出,應(yīng)讓自己冷靜下來認(rèn)真分析題目,盡量自己解決。在每個階段的學(xué)習(xí)中要進(jìn)行整理和歸納總結(jié),把知識的點、線、面結(jié)合起來交織成知識網(wǎng)絡(luò),納入自己的知識體系。

二、適當(dāng)多做題,養(yǎng)成良好的解題習(xí)慣。

要想學(xué)好數(shù)學(xué),多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。

對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。

在平時要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運用自如。實踐證明:越到關(guān)鍵時候,你所表現(xiàn)的解題習(xí)慣與平時練習(xí)無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養(yǎng)成良好的解題習(xí)慣是非常重要的。

三、調(diào)整心態(tài),正確對待考試。

首先,應(yīng)把主要精力放在基礎(chǔ)知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎(chǔ)性的題目,而對于那些難題及綜合性較強的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。

調(diào)整好自己的心態(tài),使自己在任何時候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠(yuǎn)鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。

在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎(chǔ)題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學(xué)會嘗試得分,使自己的水平正常甚至超常發(fā)揮。

由此可見,要把數(shù)學(xué)學(xué)好就得找到適合自己的學(xué)習(xí)方法,了解數(shù)學(xué)學(xué)科的特點,使自己進(jìn)入數(shù)學(xué)的廣闊天地中去。


六年級上冊數(shù)學(xué)知識點相關(guān)文章:

六年級上冊數(shù)學(xué)知識點整理歸納

小學(xué)六年級數(shù)學(xué)學(xué)習(xí)方法指導(dǎo)與總結(jié)

六年級上冊數(shù)學(xué)第二單元知識點

小學(xué)六年級數(shù)學(xué)知識點梳理

六年級數(shù)學(xué)知識點歸納

部編版六年級數(shù)學(xué)單元知識點

六年級數(shù)學(xué)知識點總結(jié)最新

六年級數(shù)學(xué)上冊《百分?jǐn)?shù)》知識點總結(jié)

六年級數(shù)學(xué)重要知識點

六年級數(shù)學(xué)課文知識點

856001