人教版反比例教學(xué)設(shè)計
反比例函數(shù)及其性質(zhì)是初中數(shù)學(xué)中的一個重要內(nèi)容,是中考數(shù)學(xué)的必考內(nèi)容之一。下面是學(xué)習(xí)啦小編為你整理的人教版反比例教學(xué)設(shè)計,一起來看看吧。
人教版反比例教學(xué)設(shè)計篇一
教學(xué)目標(biāo):
1.通過感知生活中的事例,理解并掌握反比例的含義,經(jīng)初步判斷兩種相關(guān)聯(lián)的量是否成反比例
2.培養(yǎng)學(xué)生的邏輯思維能力
3.感知生活中的數(shù)學(xué)知識
重點難點1.通過具體問題認(rèn)識反比例的量。
2.掌握成反比例的量的變化規(guī)律及其 特征
教學(xué)難點:
認(rèn)識反比例,能根據(jù)反比例的意義判斷兩個相關(guān)聯(lián)的量是不是成反比例。
教學(xué)過程:
一、課前預(yù)習(xí)
預(yù)習(xí)24---26頁內(nèi)容
1、什么是成反比例的量?你是怎么理解的?
2、情境一中的兩個表中量變化關(guān)系相同嗎?
3、三個情境中的兩個量哪些是成反比例的量?為什么?
二、展示與交流
利用反義詞來導(dǎo)入今天研究的課題。今天研究兩種量成反比例關(guān)系的變化規(guī)律
情境(一)
認(rèn)識加法表中和是12的直線及乘法表中積是12的曲線。
引導(dǎo)學(xué)生發(fā)現(xiàn)規(guī)律:加法表中和是12,一個加數(shù)隨另一個加數(shù)的變化而變化;乘法表中積是12,一個乘數(shù)隨另一個乘數(shù)的變化而變化。
情境(二)
讓學(xué)生把汽車行駛的速度和時間的表填完整,當(dāng)速度發(fā)生變化時,時間怎樣變化?每
兩個相對應(yīng)的數(shù)的乘積各是多少?你有什么發(fā)現(xiàn)?獨立觀察,思考
同桌交流,用自己的語言表達(dá)
寫出關(guān)系式:速度×時間=路程(一定)
觀察思考并用自己的語言描述變化關(guān)系乘積(路程)一定
情境(三)
把杯數(shù)和每杯果汁量的表填完整,當(dāng)杯數(shù)發(fā)生變化時,每杯果汁量怎樣變化?每兩個相對應(yīng)的數(shù)的乘積各是多少?你有什么發(fā)現(xiàn)?用自己的語言描述變化關(guān)系
寫出關(guān)系式:每杯果汁量×杯數(shù)=果汗總量(一定)
5、以上兩個情境中有什么共同點?
反比例意義
引導(dǎo)小結(jié):都有兩種相關(guān)聯(lián)通的量,其中一種量變化,另一種量也隨著變化,并且這兩種量中相對應(yīng)的兩個數(shù)的乘積是一定的。這兩種量之間是反比例關(guān)系。
活動四:想一想
二、 反饋與檢測
1、判斷下面每題是否成反比例
(1)出油率一定,香油的質(zhì)量與芝麻的質(zhì)量。
(2)三角形的面積一定,它的底與高。
(3)一個數(shù)和它的倒數(shù)。
(4)一捆100米電線,用去長度與剩下長度。
(5)圓柱體的體積一定,底面積和高。
(6)小林做10道數(shù)學(xué)題,已做的題和沒有做的題。
(7)長方形的長一定,面積和寬。
(8)平行四邊形面積一定,底和高。
2、教材“練一練”P33第1題。
3、教材“練一練”P33第2題。
4、找一找生活中成反比例的例子,并與同伴交流。
【提高練習(xí)】
一長方形的周長為20厘米,若長是9厘米,則寬是1厘米。請你填寫下表,并判斷這個長方形在周長不變的情況下,長和寬是否成反比例,并說明理由。
長/cm
9
8
7
6
5
寬/cm
1
板書設(shè)計: 反比例
兩個相關(guān)聯(lián)的量,乘積一定,成反比例
關(guān)系式:X×Y=K(一定)
課后反思:
本課時教學(xué)設(shè)計特點:一是情景設(shè)置和幾個表格的設(shè)計,都注重從現(xiàn)實題材出發(fā),讓學(xué)生感受到反比例在現(xiàn)實生活中的廣泛應(yīng)用。二是通過讓學(xué)生自己去分類整理、自主探究、合作交流得出反比例的意義,有利于發(fā)展學(xué)生的數(shù)學(xué)思維。
人教版反比例教學(xué)設(shè)計篇二
教學(xué)目標(biāo)
1.理解反比例的意義.
2.能根據(jù)反比例的意義,正確判斷兩種量是否成反比例.
3.培養(yǎng)學(xué)生的抽象概括能力和判斷推理能力.
教學(xué)重點
引導(dǎo)學(xué)生理解反比例的意義.
教學(xué)難點
利用反比例的意義,正確判斷兩種量是否成反比例.
教學(xué)過程
一、復(fù)習(xí)準(zhǔn)備(演示課件:成反比例的量)
1.下表中的兩種量是不是成正比例?為什么?
購買練習(xí)的本數(shù)(本)
1
2
4
6
9
總價(元)
0.80
1.60
3.20
4.80
7.20
2.回憶:成正比例的量有什么特征?
二、新授教學(xué)
(一)引入新課
我們已經(jīng)學(xué)習(xí)了常見數(shù)量關(guān)系中成正比例關(guān)系的量的特征.這節(jié)課我們繼續(xù)研究常見的數(shù)量關(guān)系中的另外一種特征——成反比例的量.
教師板書:成反比例的量
(二)教學(xué)例4(演示課件:成反比例的量)
1.出示例4,提出觀察思考要求:
從表中你發(fā)現(xiàn)了什么?這個表同復(fù)習(xí)的表相比,有什么不同?
(1)表中的兩種量是每小時加工的數(shù)量和所需的加工時間.
教師板書:每小時加工數(shù)和加工時間
(2)每小時加工的數(shù)量擴大,所需的加工時間反而縮小;每小時加工的數(shù)量縮小,所需的加工時間反而擴大.
教師追問:這是兩種相關(guān)聯(lián)的量嗎?為什么?
(3)每兩個相對應(yīng)的數(shù)的乘積都是600.
2.這個600實際上就是什么?每小時加工數(shù)、加工時間和零件總數(shù),怎樣用式子表示它們之間的關(guān)系?
教師板書:零件總數(shù)
每小時加工數(shù)×加工時間=零件總數(shù)
3.小結(jié)
通過剛才的研究,我們知道,每小時加工數(shù)和加工時間是兩種相關(guān)聯(lián)的量,每小時加工數(shù)變化,加工時間也隨著變化,每小時加工數(shù)乘以加工時間等于零件總數(shù),這里的零件總數(shù)是一定的.
(三)教學(xué)例5(演示課件:成反比例的量)
1.出示例5,根據(jù)題意,學(xué)生口述填表.
2.教師提問:
(1)表中有哪兩種量?是相關(guān)聯(lián)的量嗎?
教師板書:每本張數(shù)和裝訂本數(shù)
(2)裝訂的本數(shù)是怎樣隨著每本的張數(shù)變化的?
(3)表中的兩種量有什么變化規(guī)律?
(四)比較例4和例5,概括反比例的意義.
1.請你比較例4和例5,它們有什么相同點?
(1)都有兩種相關(guān)聯(lián)的量.
(2)都是一種量變化,另一種量也隨著變化.
(3)都是兩種量中相對應(yīng)的兩個數(shù)的積一定.
2.教師小結(jié)
像這樣的兩種量,我們就把它們叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系.
3.如果用字母 和 表示兩種相關(guān)聯(lián)的量,用 表示它們的積一定,反比例關(guān)系可以用一個什么樣的式子表示?
教師板書: × = (一定)
(五)教學(xué)例6(演示課件:成反比例的量)
1.出示例6,教師提問:
(1)每天播種的公頃數(shù)和要用的天數(shù)是不是相關(guān)聯(lián)的量?
(2)每天播種的公頃數(shù)和要用的天數(shù)有什么關(guān)系?它們的積是什么?這個積一定嗎?
(3)播種總公頃數(shù)一定,每天播種公頃數(shù)和要用的天數(shù)成反比例嗎?為什么?
2.思考:播種的總公頃數(shù)一定,已經(jīng)播種的公頃數(shù)和剩下的公頃數(shù)是不是成反比例?
三、課堂小結(jié)
這節(jié)課我們學(xué)習(xí)了成反比例的量,知道了什么樣的兩種量是成反比例的量,也學(xué)會了怎樣判斷兩種量是不是成反比例.在判斷時,同學(xué)們要按照反比例的意義,認(rèn)真分析,做出正確的判斷.
四、課堂練習(xí)
(一)判斷下面每題中的兩個量是不是成反比例,并說明理由.
1.路程一定,速度和時間.
2.小明從家到學(xué)校,每分走的速度和所需時間.
3.平行四邊形面積一定,底和高.
4.小林做10道數(shù)學(xué)題,已做的題和沒有做的題.
5.小明拿一些錢買鉛筆,單價和購買的數(shù)量.
(二)你能舉一個反比例的例子嗎?
五、課后作業(yè)
判斷下面每題中的兩種量是不是成反比例,并說明理由.
1.煤的總量一定,每天的燒煤量和能夠燒的天數(shù).
2.種子的總量一定,每公頃的播種量和播種的公頃數(shù).
3.李叔叔從家到工廠,騎自行車的速度和所需的時間.
4.華容做12道數(shù)學(xué)題,做完的題和沒有做的題.
5.生產(chǎn)電視機的總臺數(shù)一定,每天生產(chǎn)的臺數(shù)和所用的天數(shù).
6.長方形的面積一定,它的長和寬.
7.小林拿一些錢買練習(xí)本,單價和購買的數(shù)量.
六、板書設(shè)計
成反比例的量
例4.每小時加工數(shù)×加工時間=零件總數(shù)(一定)
例5.每本頁數(shù)×裝訂本數(shù)=紙的總頁數(shù)(一定)
兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的積一定,這兩種量就叫做成反比例的量.它們的關(guān)系叫做反比例關(guān)系.
× = (一定)
例6.因為:每天播種的公頃數(shù)×天數(shù)=播種的總公頃數(shù)(一定)
所以:每天播種的公頃數(shù)和要用的天數(shù)成反比例.