国产成人v爽在线免播放观看,日韩欧美色,久久99国产精品久久99软件,亚洲综合色网站,国产欧美日韩中文久久,色99在线,亚洲伦理一区二区

學習啦>學習方法>初中學習方法>初三學習方法>九年級數(shù)學>

正多邊形和圓教案設(shè)計(2)

時間: 淑航658 分享

  正多邊形和圓教案設(shè)計二

  教學目標 :

  (1)鞏固正多邊形的有關(guān)概念、性質(zhì)和定理;

  (2)通過證明和畫圖提高學生綜合運用分析問題和解決問題的能力;

  (3)通過例題的研究,培養(yǎng)學生的探索精神和不斷更新的創(chuàng)新意識及選優(yōu)意識.

  教學重點:

  綜合運用正多邊形的有關(guān)概念和正多邊形與圓關(guān)系的有關(guān)定理來解決問題,要理解通過對具體圖形的證明所給出的一般的證明方法,還要注意與前面所學知識的聯(lián)想和化歸.

  教學難點 :綜合運用知識證題.

  教學活動設(shè)計:

  (一)知識回顧

  1.什么叫做正多邊形?

  2.什么是正多邊形的中心、半徑、邊心距、中心角?

  3.正多邊形有哪些性質(zhì)?(邊、角、對稱性、相似性、有兩圓且同心)

  4.正n邊形的每個中心角都等于 .

  5.正多邊形的有關(guān)的定理.

  (二)例題研究:

  例1、求證:各角相等的圓外切五邊形是正五邊形.

  已知:如圖,在五邊形ABCDE中,∠A=∠B=∠C=∠D=∠E,邊AB、BC、CD、DE、EA與⊙O分別相切于A’、B’、C’、D’、E’.

  求證:五邊形ABCDE是正五邊形.

  分析:要證五邊形ABCDE是正五邊形,已知已具備了五個角相等,顯然證五條邊相等即可.

  教師引導學生分析,學生動手證明.

  證法1:連結(jié)OA、OB、OC,

  ∵五邊形ABCDE外切于⊙O.

  ∴∠BAO=∠OAE,∠OCB=∠OCD,∠OBA=∠OBC,

  又∵∠BAE=∠ABC=∠BCD.

  ∴∠BAO=∠OCB.

  又∵OB=OB

  ∴△ABO≌△CBO,∴AB=BC,同理 BC=CD=DE=EA.

  ∴五邊形ABCDE是正五邊形.

  證法2:作⊙O的半徑OA’、OB’、OC’,則

  OA’⊥AB,OB’⊥BC、OC’⊥CD.

  ∠B=∠C ∠1=∠2 =.

  同理 ===,

  即切點A’、B’、C’、D’、E’是⊙O的5等分點.所以五邊形ABCDE是正五邊形.

  反思:判定正多邊形除了用定義外,還常常用正多邊形與圓的關(guān)系定理1來判定,證明關(guān)鍵是證出各切點為圓的等分點.由同樣的方法還可以證明“各角相等的圓外切n邊形是正邊形”.

  此外,用正多邊形與圓的關(guān)系定理1中“把圓n等分,依次連結(jié)各分點,所得的多邊形是圓內(nèi)接正多邊形”還可以證明“各邊相等的圓內(nèi)接n邊形是正n邊形”,證明關(guān)鍵是證出各接點是圓的等分點。

  拓展1:已知:如圖,五邊形ABCDE內(nèi)接于⊙O,AB=BC=CD=DE=EA.

  求證:五邊形ABCDE是正五邊形.(證明略)

  分小組進行證明競賽,并歸納學生的證明方法.

  拓展2:已知:如圖,同心圓⊙O分別為五邊形ABCDE內(nèi)切圓和外接圓,切點分別為F、G、H、M、N.

  求證:五邊形ABCDE是正五邊形.(證明略)

  學生獨立完成證明過程,對B、C層學生教師給予及時指導,最后可以應(yīng)用實物投影展示學生的證明成果,特別是對證明方法好,步驟推理嚴密的學生給予表揚.

  例2、已知:正六邊形ABCDEF.

  求作:正六邊形ABCDEF的外接圓和內(nèi)切圓.

  作法:1過A、B、C三點作⊙O.⊙O就是所求作的正六邊形的外接圓.

  2、以O(shè)為圓心,以O(shè)到AB的距離(OH)為半徑作圓,所作的圓就是正六邊形的內(nèi)切圓.

  用同樣的方法,我們可以作正n邊形的外接圓與內(nèi)切圓.

  練習:P161

  1、求證:各邊相等的圓內(nèi)接多邊形是正多邊形.

  2、(口答)下列命題是真命題嗎?如果不是,舉出一個反例.

  (1)各邊相等的圓外切多邊形是正多邊形;

  (2)各角相等的圓內(nèi)接多邊形是正多邊形.

  3、已知:正方形ABCD.求作:正方形ABCD的外接圓與內(nèi)切圓.

  (三)小結(jié)

  知識:復習了正多邊形的定義、概念、性質(zhì)和判定方法.

  能力與方法:重點復習了正多邊形的判定.正多邊形的外接圓與內(nèi)切圓的畫法.

295405